10.3 Fourier Series of Discrete-Time Periodic Signals 613(a)0112345nx[n]......(b)0 11223
nv[n]1 ......10, 0, 1, 1 01, 0, 0, 10, 1, 1, 01, 1, 0, 001100
x[n](c)n120123z[n]0, 0, 1, 1 ......1, 0, 0, 10, 1, 1, 01, 1, 0, 0
1100FIGURE 10.13
Periodic convolution sum ofx[n]with itself to getv[n]: (a) linear and circular representations ofx[n]; (b) periodic
convolution sum givingv[n]. (c) Circular representation of periodic convolution sum ofx[n]andy[n]=x[n−2],
the result isz[n]=v[n−2].
As before, the Fourier series coefficients ofz[n] are given byZ[k]= 4X 1 (z)Y 1 (z)
4 × 4|z=ej 2 πk/ 4 =z−^2 + 2 z−^3 +z−^4
4|z=ej 2 πk/ 4=
1
4
(e−j^2 π^2 k/^4 + 2 e−j^2 π^3 k/^4 +e−j^2 π^4 k/^4 )=1
4
( 1 +e−j^2 π^2 k/^4 + 2 e−j^2 π^3 k/^4 )