11.5 FIR Filter Design 687
FIGURE 11.23
Low-pass FIR filters using (a)
rectangular and (b) Hamming
windows.
−0.1 051015 20
0
0.1
0.2
0.3
h
[n
]
n
ω/π
0 0.5 1
− 100
− 80
− 60
− 40
− 20
0
20log10|
H
(e
jω
)|(dB)
− 100
− 80
− 60
− 40
− 20
0
20log10|
H
(e
jω
)|(dB)
0 0.5 1
ω/π
0 0.5 1
0
0.2
0.4
0.6
0.8
1
ω/π
|H
(e
jω
)|
ω/π
0 0.5 1
−8
−6
−4
−2
0
<H
(e
jω
)
−10
−5
0
<H
(e
jω
)
0 0.5 1
0
0.2
0.4
0.6
0.8
1
ω/π
0 0.5 1
ω/π
|H
(e
jω
)|
051015 20
0
0.1
0.2
0.3
h
[n
]
n
(b)
(a)
%%%%%%%%%%%%%%%%
% Example 11.13---FIR filter from ‘fir’
%%%%%%%%%%%%%%%%
M = 14;wc = 0.2;wo = 1;wind = 4;
[b] = fir(M,wc,wo,wind);
[H,w] = freqz(b,1,256);
The results are shown in Figure 11.24. Notice the symmetry of the impulse response with respect
toM/ 2 =7 gives a linear phase in the passband of the high-pass filter. The second lobe of the gain
in dB is about−50 dB.