712 CHAPTER 12: Applications of Discrete-Time Signals and Systems
Decimation-in-Time Algorithm
Applying the divide-and-conquer principle, we expressX[k] asX[k]=N∑− 1
n= 0x[n]WNkn k=0,...,N− 1=
N∑/ 2 − 1
n= 0[
x[2n]WNk(^2 n)+x[2n+1]WNk(^2 n+^1 )]
That is, we gather the samples with even arguments separately from those with odd arguments.From the definition ofWnkNwe have thatWkN(^2 n)=e−j^2 π(^2 kn)/N=e−j^2 πkn/(N/^2 )=WNkn/ 2WkN(^2 n+^1 )=WNkWknN/ 2which allows us to writeX[k]=N∑/ 2 − 1
n= 0x[2n]WNkn/ 2 +WkNN∑/ 2 − 1
n= 0x[2n+1]WNkn/ 2=Y[k]+WkNZ[k] k=0,...,N− 1 (12.3)whereY[k] andZ[k] are DFTs of lengthN/2 of the even-numbered sequence{x[2n]}and of the
odd-numbered sequence{x[2n+1]}, respectively.Although it is clear how to compute the values ofX[k] fork=0,...,(N/ 2 )−1 asX[k]=Y[k]+WNkZ[k] k=0,...,(N/ 2 )− 1 (12.4)it is not clear how to proceed fork≥N/2. TheN/2 periodicity ofY[k] andZ[k] allows us to find
those values:X[k+N/2]=Y[k+N/2]+W
k+N/ 2
N Z[k+N/2]=Y[k]−WNkZ[k] k=0,...,N/ 2 − 1 (12.5)where besides the periodicity ofY[k] andZ[k], we usedWNk+N/^2 =e−j^2 π[k+N/2]/N=e−j^2 πk/Ne−jπ=−WkNWriting Equations (12.4) and (12.5) in a matrix form we have