Signals and Systems - Electrical Engineering

(avery) #1
12.4 Application to Digital Communications 739

0 1 2 3 4 5 6 7 8 9

− 1

0

1
m(
t)

Message

0 1 2 3 4 5 6 7 8 9
− 1

0

1
c(t

)

Code

0 1 2 3 4 5 6 7 8 9
− 1

0

1
s(t

)

t (sec)

Spread Message

− 50000 − 4000 − 3000 − 2000 − 1000 0 1000200030004000

20

40

60

|M
(f)|

Message Spectrum

− 50000 − 4000 − 3000 − 2000 − 1000 0 1000200030004000

10

20

30

|S(

f)|

f (Hz)

Spread Signal Spectrum

− (^10123456789)
0
1
− (^10123456789)
0
1
r(t
)
0 1 2 3 4 5 6 7 8 9
− 1
0
1
− (^10123456789)
0
1
t (sec)
× 103
× 103
× 103
× 103
× 103
× 103
× 103
s(a
t)
ma
(t)
m^1
(t)
(a) (b)
(c)
FIGURE 12.13
Simulation of direct-sequence spread-spectrum communication. (a) Displays from top to bottom the message,
the code, and the spread signal. (b) Displays the spectrum of the message and of the spread signal (notice it is
wider than that of the message). (c) Displays the band-pass signals sent and received (assumed equal), the
despread analog, and the binary message.
subplot(311)
bar(t,m); axis([0 max(t) -1.2 1.2]);grid; ylabel(‘m(t)’)
subplot(312)
bar(t,c); axis([0 max(t) -1.2 1.2]);grid; ylabel(‘c(t)’)
subplot(313)
bar(t,s); axis([0 max(t) -1.2 1.2]);grid; ylabel(‘s(t)’); xlabel(‘t (sec)’)
% spectrum of message and spread signal
M = fftshift(abs(fft(m)));
S = fftshift(abs(fft(s)));
N = length(M);K = [0:N-1];w = 2∗K∗pi/N-pi; f = w/(2∗pi∗Ts);
figure(2)
subplot(211)

Free download pdf