744 APPENDIX: Useful Formulas
Productssin(θ)sin(φ)=1
2
[cos(θ−φ)−cos(θ+φ)]cos(θ)cos(φ)=1
2
[cos(θ−φ)+cos(θ+φ)]sin(θ)cos(φ)=1
2
[sin(θ+φ)+sin(θ−φ)]cos(θ)sin(φ)=1
2
[sin(θ+φ)−sin(θ−φ)]Euler’s Identityejθ=cos(θ)+jsin(θ) j=√
− 1
cos(θ)=ejθ+e−jθ
2sin(θ)=ejθ−e−jθ
2 jtan(θ)=−j[
ejθ−e−jθ
ejθ+e−jθ]
Hyperbolic Trigonometry Relations
Hyperbolic cosine: cosh(α)=1
2
(eα+e−α)Hyperbolic sine: sinh(α)=1
2
(eα−e−α)cosh^2 (α)−sinh^2 (α)= 1Calculus
Derivatives (u,vfunctions ofx;α,βconstants)
duv
dx=udv
dx+vdu
dx
dun
dx=nun−^1du
dxIntegrals
∫
φ(y)dx=∫
φ(y)
y′dy, wherey′=dy
dx
∫
udv=uv−∫
vdu
∫
xndx=xn+^1
n+ 1n6=−1, integer