744 APPENDIX: Useful Formulas
Products
sin(θ)sin(φ)=
1
2
[cos(θ−φ)−cos(θ+φ)]
cos(θ)cos(φ)=
1
2
[cos(θ−φ)+cos(θ+φ)]
sin(θ)cos(φ)=
1
2
[sin(θ+φ)+sin(θ−φ)]
cos(θ)sin(φ)=
1
2
[sin(θ+φ)−sin(θ−φ)]
Euler’s Identity
ejθ=cos(θ)+jsin(θ) j=
√
− 1
cos(θ)=
ejθ+e−jθ
2
sin(θ)=
ejθ−e−jθ
2 j
tan(θ)=−j
[
ejθ−e−jθ
ejθ+e−jθ
]
Hyperbolic Trigonometry Relations
Hyperbolic cosine: cosh(α)=
1
2
(eα+e−α)
Hyperbolic sine: sinh(α)=
1
2
(eα−e−α)
cosh^2 (α)−sinh^2 (α)= 1
Calculus
Derivatives (u,vfunctions ofx;α,βconstants)
duv
dx
=u
dv
dx
+v
du
dx
dun
dx
=nun−^1
du
dx
Integrals
∫
φ(y)dx=
∫
φ(y)
y′
dy, wherey′=
dy
dx
∫
udv=uv−
∫
vdu
∫
xndx=
xn+^1
n+ 1
n6=−1, integer