Solution
The complete spherical harmonic 3, 3 is given by
3, 3 e^3 isin^3
Let us consider the total angular momentum first, since we can use the re-
sults of those manipulations to get the total energy. The total angular mo-
mentum can be determined from
Lˆ^2 ^2
2
2 cot
sin
1
2
2
(^2)
Taking derivatives first with respect to , one finds
8
7
2
0
e^3 isin^3
8
3
2
7
^0 e^3 isin^2 cos
2
(^2) 8
7
2
0
e^3 isin^3
8
3
2
7
0
e^3 i(2 cos^2 sin sin^3 )
The derivative with respect to is simply
2
(^2) 8
7
2
0
e^3 isin^3 32 i^2
8
7
2
0
e^3 isin^3
9
8
7
2
0
e^3 isin^3
Putting all this together, one gets
ˆL^2 ^2
8
3
2
7
0
e^3 i(2 cos^2 sin sin^3 )
cot
8
3
2
7
^0 e^3 isin^2 cos
sin
1
2 ^9 8
7
2
0
e^3 i
This can be simplified by factoring out the wavefunction constants and the
exponential from all of the terms to get
ˆL^2 ^2 3(2 cos^2 sin sin^3 )
3 cot sin^2 cos 9
sin
1
(^2) sin
(^3)
8
7
2
0
e^3 i
Simplifying all the terms and remembering the definition of the cotangent:
Lˆ^2 ^2 (6 cos^2 sin 3 sin^3
3 sin cos^2 9 sin )
8
7
2
0
e^3 i
^2 (9 cos^2 sin 3 sin^3 9 sin )
8
7
2
0
e^3 i
Substituting for the trigonometric identity cos^2 1 sin^2 :
ˆL^2 ^2 [9(1 sin^2 ) sin 3 sin^3 9 sin ]
8
7
2
0
e^3 i
^2 (9 sin 9 sin^3 3 sin^3 9 sin )
8
7
2
0
e^3 i
^70
82
350 CHAPTER 11 Quantum Mechanics: Model Systems and the Hydrogen Atom