A. G. Brown (1985). Clavulanic acid and related compounds: inhibitors of β-lactamase enzymes.
In: S. M. Roberts, B. J. Price (Eds.). Medicinal Chemistry: The Role of Organic Chemistry
in Drug Research. New York: Academic Press.
H. Busse, C. Wostmann, E. Bakker (1992). The bactericidal action of streptomycin. J. Gen.
Microbiol. 138: 551.
L. D. Cama, B. G. Christensen (1978). Structure–activity relationships of “non-classical”β-lactam
antibiotics.Annu. Rep. Med. Chem. 13: 149–158.
I. Chopra (1998). Protein synthesis as a target for antibacterial drugs: current status and future
opportunities.Expert Opinion on Investigational Drugs 7: 1237–1244.
I. Chopra, P. Hawkey, M. Hinton (1992). Tetracyclines: molecular and clinical aspects.
J. Antimicrob. Chemother. 29: 245.
B. G. Christensen, R. W. Radcliffe (1976). Total synthesis of β-lactam antibiotics. Annu. Rep.
Med. Chem. 11: 271–280.
M. Debono, R. S. Gordee (1982) Antibacterial agents. Annu. Rep. Med. Chem. 17 : 107–117.
M. E. Falages, S. Gorbach (1995). Clindamycin and metronidazole. Med. Clin. North Am. 79: 845.
E. F. Gale, E. Cundliffe, P. E. Reynolds, M. H. Richmond, and M. J. Waring (1981). The
Molecular BasisofAntibiotic Action, 2nd ed. New York: Wiley.
D. M. Gilbert (2001). Making sense of eukaryotic DNA replication origins. Science 294: 96–99.
T. D. Gootz (1985). Determinants of bacterial resistance to beta-lactam antibiotics. Annu. Rep.
Med. Chem. 20: 137–144.
D. W. Green (2002). The bacterial cell wall as a source of antibacterial targets. Expert Opinion
on Therapeutic Targets 6: 1–19.
E. S. Hamanaka, M. S. Kelly (1983). Antibacterial agents. Annu. Rep. Med. Chem. 18: 109–118.
R. Hare (1970). The Birth of Penicillin.London: Allen and Unwin.
D. Havlir, P. Barnes (1999). Tuberculosis in patients with HIV infection. New Engl. J. Med.
340 : 367.
S. Houston, A. Fanning (1994). Current and potential treatment of tuberculosis. Drugs 48: 689.
B. K. Hubbard, C. T. Walsh (2003). Vancomycin assembly: nature’s way. Angew. Chem. Int. Ed.
42 : 730–765.
J. A. Kelly, P. C. Moews, J. R. Knox, J. M. Frére, J. M. Glunysen (1982). Penicillin target enzyme
and the antibiotic binding site. Science 218: 479–481.
A. Maxwell, D. M. Lawson (2003). The ATP-binding site of type II topoisomerases as a target
for antibacterial drugs. Curr. Top. Med. Chem. 3: 283–303.
R. B. Morin, M. Gorman (Eds.) (1982). Chemistry and Biology of β-Lactam Antibiotics.New York:
Academic Press.
J. Rosamond, A. Allsop (2000). Harnessing the power of the genome in the search for new antibi-
otics.Science 287: 1973–1977.
A. D. Russel (1983). Design of antimicrobial chemotherapeutic agents. In: J. Smith, H. Williams
(Eds.).Introduction to PrinciplesofDrug Design. Bristol: Wright.
M. B. Schmid (1998). Novel approaches to the discovery of antimicrobial agents. Curr. Opin.
Chem. Biol. 2: 529–534.
B. G. Spratt (1994). Resistance to antibiotics mediated by target alterations. Science 264: 389.
B. Suh, B. Lorber (1995). Quinolones. Med. Clin. North Am. 79: 869.
A. S. Wagman, M. L. MacKichan (2003). Antibacterial treatment of community-acquired respi-
ratory tract infections. Annu. Rep. Med. Chem. 38: 183.
C. T. Walsh (1993). Vancomycin resistance: decoding the molecular logic. Science 261: 308.
C. T. Walsh (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature 406:
775–781.
C. T. Walsh (2004). Polyketide and nonribosomal peptide antibiotics: modularity and versatility.
Science 303: 1805–1810.
EXOGENOUS PATHOGENS AND TOXINS 597