8.5 Integration by substituting z = tan 0/2 479
where Pl and Ql are polynomials in z. Several examples appear in the
problems at the end of this section.
Except in special cases, evaluating integrals of the form
I aozm + aizm-i +... + am_lz + am
dx
boz" + biz's-1 + ... + bn
is very tedious business. When n < 2, and in a few special additional
cases, answers can befound in tables of integrals. Some information
about the matter will appear in Section 9.4 of this book.
Problems 8.59
1 By use of the substitution z = tan 2, show that
(a) J sin B
dB = fl dz=log N + c =log I tan
01
+ c
(b) r 1
=
r 2 r1-z+1+z
J cos 0 de l^1 z2
A = 1 (1 - z) (1 + z)A
= J ( 1 + l
1 z) dz = log
1+tan2
+c
1 -tang
1 2
(c),J a+b sinBdeJ az2+2bz+adz
(a) fa+bsin8+ccosOd9f (a-c)z2+2bz+(a+c)dx
sing+cosB z(1 -z2)(1+2z-z2)dz
(e) ) tanB + cot BdB = 4 f (1 + z2)4
2z 2
(f) 1 -- z2+c=sin0 +c=
f cos0dO=2 f (1+z2)2dz
(g) logi +Z2 + c = log sec B + c =ftan 0 d9 = 4f 1 zz4A
(h) log a+ 1 +zz2) + c = log (a + b sin B) + c
b cos 6
J a+bsin0
- 2b 1 - z2 dz
f(az2 + 2bz + a) (1 + z2)
sin 6 4z
(2) f 1 + sin g d9 =
f + z2)(1 + z)2A
(;) f cos 0 f 1 - z2
1+cosBde - 1+z2dz
1+z2z2dz=2tan' tanL -tang+c
f
2