5.6.4 Fourier Transform of Gaussian*
We wish toFourier transform the Gaussian wave packetin (momentum) k-spaceA(k) =
( 2 α
π
) 1 / 4
e−α(k−k^0 )
2
to getf(x) in position space. The Fourier Transform formula isf(x) =1
√
2 π(
2 α
π) 1 / 4 ∫∞
−∞e−α(k−k^0 )2
eikxdk.Now we will transform the integral a few times to get to the standard definite integral of a Gaussian
for which we know the answer. First,
k′=k−k 0
which does nothing really sincedk′=dk.
f(x) =( α
2 π^3) 1 / 4
eik^0 x∫∞
−∞e−α(k−k^0 )2
ei(k−k^0 )xdkf(x) =( α
2 π^3) 1 / 4
eik^0 x∫∞
−∞e−αk′ 2
eik′x
dk′Now we want tocomplete the squarein the exponent inside the integral. We plan a term like
e−αk
′′ 2
so we define
k′′=k′−ix
2 α.
Againdk′′=dk′=dk. Lets write out the planned exponent to see what we are missing.
−α(
k′−
ix
2 α) 2
=−αk′^2 +ik′x+
x^2
4 αWe need to multiply bye−
x 42 α
to cancel the extra term in the completed square.
f(x) =( α
2 π^3) 1 / 4
eik^0 x∫∞
−∞e−α(k′−ix
2 α)
2
e−x 42 α
dk′That term can be pulled outside the integral since it doesn’t depend onk.
f(x) =(α
2 π^3) 1 / 4
eik^0 xe−x 42 α∫∞
−∞e−αk′′ 2
dk′′So now we have the standard Gaussian integral which just gives us
√π
α.f(x) =( α
2 π^3) 1 / 4 √π
αeik^0 xe−x 42 αf(x) =(
1
2 πα) 1 / 4
eik^0 xe−x 42 α