130_notes.dvi

(Frankie) #1

and
p(op)=p.


The (op) notation used above is usually dropped. If we see the variablep, use of the operator is
implied (except in state written in terms ofplikeφ(p)).


Gasiorowicz Chapter 3


Griffiths doesn’t cover this.


Cohen-Tannoudji et al. Chapter


6.3 Expectation Values


Operators allow us to compute the expectation value of some physics quantity given the wavefunc-
tion. If a particle is in the stateψ(x,t), the normal way tocompute the expectation valueof
f(x) is


〈f(x)〉ψ=

∫∞

−∞

P(x)f(x)dx=

∫∞

−∞

ψ∗(x)ψ(x)f(x)dx.

We can move thef(x) between just beforeψanticipating the use of linear operators.


〈f(x)〉ψ=

∫∞

−∞

ψ∗(x)f(x)ψ(x)dx

If the variable we wish to compute the expectation value of (likep) is not a simple function ofx, let
its operator act onψ(x). Theexpectation value ofpin the stateψis


〈p〉ψ=〈ψ|p|ψ〉=

∫∞

−∞

ψ∗(x)p(op)ψ(x)dx

The Dirac Bra-ket notation (See section 6.4) shown above is a convenient way to represent the
expectation value of a variable given some state.



  • See Example 6.7.1:A particle is in the stateψ(x) =


( 1

2 πα

) 1 / 4

eik^0 xe−
x 4 α^2

. What is the expectation
value ofp?*


For any physical quantityv, the expectation value ofvin an arbitrary stateψis


〈ψ|v|ψ〉=

∫∞

−∞

ψ∗(x)v(op)ψ(x)dx
Free download pdf