and
p(op)=p.
The (op) notation used above is usually dropped. If we see the variablep, use of the operator is
implied (except in state written in terms ofplikeφ(p)).
Gasiorowicz Chapter 3
Griffiths doesn’t cover this.
Cohen-Tannoudji et al. Chapter
6.3 Expectation Values
Operators allow us to compute the expectation value of some physics quantity given the wavefunc-
tion. If a particle is in the stateψ(x,t), the normal way tocompute the expectation valueof
f(x) is
〈f(x)〉ψ=
∫∞
−∞
P(x)f(x)dx=
∫∞
−∞
ψ∗(x)ψ(x)f(x)dx.
We can move thef(x) between just beforeψanticipating the use of linear operators.
〈f(x)〉ψ=
∫∞
−∞
ψ∗(x)f(x)ψ(x)dx
If the variable we wish to compute the expectation value of (likep) is not a simple function ofx, let
its operator act onψ(x). Theexpectation value ofpin the stateψis
〈p〉ψ=〈ψ|p|ψ〉=
∫∞
−∞
ψ∗(x)p(op)ψ(x)dx
The Dirac Bra-ket notation (See section 6.4) shown above is a convenient way to represent the
expectation value of a variable given some state.
- See Example 6.7.1:A particle is in the stateψ(x) =
( 1
2 πα
) 1 / 4
eik^0 xe−
x 4 α^2
. What is the expectation
value ofp?*
For any physical quantityv, the expectation value ofvin an arbitrary stateψis
〈ψ|v|ψ〉=
∫∞
−∞
ψ∗(x)v(op)ψ(x)dx