130_notes.dvi

(Frankie) #1

We can subtract the same equations to most easily solve forR.


2 Reika=

1

2

Teika

[(

k
k′


k′
k

)

e−^2 ik

′a
+

(

k′
k


k
k′

)

e^2 ik

′a

]

R=

1

4

T

[

− 2 i

k
k′

sin(2k′a) + 2i

k′
k

sin(2k′a)

]

R=

i
2

Tsin(2k′a)

[

k′
k


k
k′

]

R=

ikk′e−^2 ikasin(2k′a)

[

k′
k−

k
k′

]

2 kk′cos(2k′a)−i(k^2 +k′^2 ) sin(2k′a)

R=

i

(

k′^2 −k^2

)

sin(2k′a)e−^2 ika
2 kk′cos(2k′a)−i(k^2 +k′^2 ) sin(2k′a)

We have solved the boundary condition equations to find the reflection and transmission amplitudes


R = ie−^2 ika

(k′^2 −k^2 ) sin(2k′a)
2 kk′cos(2k′a)−i(k′^2 +k^2 ) sin(2k′a)

T = e−^2 ika

2 kk′
2 kk′cos(2k′a)−i(k′^2 +k^2 ) sin(2k′a)

The squares of these give the reflection and transmission probability, since the potential is the same
in the two regions.


9.7.3 Bound States of a 1D Potential Well*.


In the two outer regions we have solutions


u 1 (x) =C 1 eκx
u 3 (x) =C 3 e−κx

κ=


− 2 mE
̄h^2

.

In the center we have the same solution as before.


u 2 (x) =Acos(kx) +Bsin(kx)

k=


2 m(E+V 0 )
̄h^2

(Note that we have switched fromk′tokfor economy.) We will have 4 equations in 4 unknown
coefficients.


At−awe get


C 1 e−κa=Acos(ka)−Bsin(ka)
κC 1 e−κa=kAsin(ka) +kBcos(ka).
Free download pdf