We can subtract the same equations to most easily solve forR.
2 Reika=
1
2
Teika
[(
k
k′
−
k′
k
)
e−^2 ik
′a
+
(
k′
k
−
k
k′
)
e^2 ik
′a
]
R=
1
4
T
[
− 2 i
k
k′
sin(2k′a) + 2i
k′
k
sin(2k′a)
]
R=
i
2
Tsin(2k′a)
[
k′
k
−
k
k′
]
R=
ikk′e−^2 ikasin(2k′a)
[
k′
k−
k
k′
]
2 kk′cos(2k′a)−i(k^2 +k′^2 ) sin(2k′a)
R=
i
(
k′^2 −k^2
)
sin(2k′a)e−^2 ika
2 kk′cos(2k′a)−i(k^2 +k′^2 ) sin(2k′a)
We have solved the boundary condition equations to find the reflection and transmission amplitudes
R = ie−^2 ika
(k′^2 −k^2 ) sin(2k′a)
2 kk′cos(2k′a)−i(k′^2 +k^2 ) sin(2k′a)
T = e−^2 ika
2 kk′
2 kk′cos(2k′a)−i(k′^2 +k^2 ) sin(2k′a)
The squares of these give the reflection and transmission probability, since the potential is the same
in the two regions.
9.7.3 Bound States of a 1D Potential Well*.
In the two outer regions we have solutions
u 1 (x) =C 1 eκx
u 3 (x) =C 3 e−κx
κ=
√
− 2 mE
̄h^2
.
In the center we have the same solution as before.
u 2 (x) =Acos(kx) +Bsin(kx)
k=
√
2 m(E+V 0 )
̄h^2
(Note that we have switched fromk′tokfor economy.) We will have 4 equations in 4 unknown
coefficients.
At−awe get
C 1 e−κa=Acos(ka)−Bsin(ka)
κC 1 e−κa=kAsin(ka) +kBcos(ka).