We now have two pairs of equations for then+ 1 coefficients in terms of thencoefficients.
An+1 =
2 maV 0
̄h^2 k
Bncos(ka)−Bnsin(ka) +Ancos(ka)
Bn+1 =
2 maV 0
̄h^2 k
Bnsin(ka) +Bncos(ka) +Ansin(ka)
An+1 = eiφAn
Bn+1 = eiφBn
Using the second pair of equations to eliminate then+ 1 coefficients, we have
(eiφ−cos(ka))An=
(
2 maV 0
̄h^2 k
cos(ka)−sin(ka)
)
Bn
(
eiφ−cos(ka)−
2 maV 0
̄h^2 k
sin(ka)
)
Bn= sin(ka)An.
Now we can eliminate all the coefficients.
(eiφ−cos(ka))(eiφ−cos(ka)−
2 maV 0
̄h^2 k
sin(ka))
=
(
2 maV 0
̄h^2 k
cos(ka)−sin(ka)
)
sin(ka)
e^2 iφ−eiφ
(
2 maV 0
̄h^2 k
sin(ka) + cos(ka) + cos(ka)
)
+
2 maV 0
̄h^2 k
sin(ka) cos(ka) + cos^2 (ka)
=
2 maV 0
̄h^2 k
sin(ka) cos(ka)−sin^2 (ka)
e^2 iφ−eiφ
(
2 maV 0
̄h^2 k
sin(ka) + 2 cos(ka)
)
+ 1 = 0
Multiply bye−iφ.
eiφ+e−iφ−
(
2 maV 0
̄h^2 k
sin(ka) + 2 cos(ka)
)
= 0
cos(φ) = cos(ka) +
maV 0
̄h^2 k
sin(ka)
This relation puts constraints onk, like the constraints that give us quantized energies for bound
states. Since cos(φ) can only take on values between -1 and 1, there are allowed bands ofkand gaps
between those bands.
9.8 Examples
This whole section is examples.