130_notes.dvi

(Frankie) #1

10.2 Commutators ofA,A†andH.


We will use the commutator betweenAandA†to solve the HO problem. The operators are defined
to be


A =

(√


2 ̄h

x+i

p

2 m ̄hω

)

A† =

(√


2 ̄h

x−i

p

2 m ̄hω

)

.

Thecommutatoris


[A,A†] =


2 ̄h
[x,x] +

1

2 m ̄hω
[p,p]−

i
2 ̄h
[x,p] +

i
2 ̄h
[p,x]

=

i
2 ̄h

(−[x,p] + [p,x]) =

i
̄h

[p,x] = 1.

Lets use this simple commutator
[A,A†] = 1


to computecommutators with the Hamiltonian. This is easy ifHis written in terms ofAand
A†.


[H,A] = ̄hω[A†A,A] = ̄hω[A†,A]A=− ̄hωA
[H,A†] = ̄hω[A†A,A†] = ̄hωA†[A,A†] = ̄hωA†

10.3 Use Commutators to Derive HO Energies


We have computed the commutators


[H,A] = − ̄hωA
[H,A†] = ̄hωA†

Apply [H,A] to the energy eigenfunctionun.


[H,A]un=− ̄hωAun
HAun−AHun=− ̄hωAun
H(Aun)−En(Aun) =− ̄hωAun
H(Aun) = (En− ̄hω)(Aun)

This equation shows thatAunis an eigenfunction ofHwith eigenvalueEn− ̄hω. Therefore,Alowers
the energyby ̄hω.

Free download pdf