10.2 Commutators ofA,A†andH.
We will use the commutator betweenAandA†to solve the HO problem. The operators are defined
to be
A =
(√
mω
2 ̄h
x+i
p
√
2 m ̄hω
)
A† =
(√
mω
2 ̄h
x−i
p
√
2 m ̄hω
)
.
Thecommutatoris
[A,A†] =
mω
2 ̄h
[x,x] +
1
2 m ̄hω
[p,p]−
i
2 ̄h
[x,p] +
i
2 ̄h
[p,x]
=
i
2 ̄h
(−[x,p] + [p,x]) =
i
̄h
[p,x] = 1.
Lets use this simple commutator
[A,A†] = 1
to computecommutators with the Hamiltonian. This is easy ifHis written in terms ofAand
A†.
[H,A] = ̄hω[A†A,A] = ̄hω[A†,A]A=− ̄hωA
[H,A†] = ̄hω[A†A,A†] = ̄hωA†[A,A†] = ̄hωA†
10.3 Use Commutators to Derive HO Energies
We have computed the commutators
[H,A] = − ̄hωA
[H,A†] = ̄hωA†
Apply [H,A] to the energy eigenfunctionun.
[H,A]un=− ̄hωAun
HAun−AHun=− ̄hωAun
H(Aun)−En(Aun) =− ̄hωAun
H(Aun) = (En− ̄hω)(Aun)
This equation shows thatAunis an eigenfunction ofHwith eigenvalueEn− ̄hω. Therefore,Alowers
the energyby ̄hω.