130_notes.dvi

(Frankie) #1
state of the particle and on the potential.
Answer

d〈A〉
dt

=

1

i ̄h

〈[A,H]〉

d〈x〉
dt

=

1

i ̄h

〈[

x,

p^2
2 m

]〉

=

1

i ̄h


p
m

(

− ̄h
i

)〉

=

〈p〉
m
d〈p〉
dt

=

1

i ̄h

〈[p,V(x)]〉=

1

i ̄h

̄h
i

〈[

d
dx

,V(x)]〉

= −


dV
dx



  1. Compute the commutators [A†,An] and [A,eiHt] for the 1D harmonic oscillator.
    Answer


[A†,An] = n[A†,A]An−^1 =−nAn−^1

[A,eiHt] = [A,

∑∞

n=0

(it)nHn
n!

] =

∑∞

n=0

(it)n[A,Hn]
n!

=

∑∞

n=0

n(it)n[A,H]Hn−^1
n!

=it

∑∞

n=1

(it)n−^1 ̄hωAHn−^1
(n−1)!

it

∑∞

n=1

(it)n−^1 ̄hωAHn−^1
(n−1)!

= it ̄hωA

∑∞

n=1

(it)n−^1 Hn−^1
(n−1)!

= it ̄hωA

∑∞

n=0

(it)nHn
(n)!

=it ̄hωAeiHt

4.*Assume that the states|ui>are the eigenstates of the Hamiltonian with eigenvaluesEi,
(H|ui>=Ei|ui>).


a) Prove that< ui|[H,A]|ui>= 0 for an arbitrary linear operatorA.
b) For a particle of massmmoving in 1-dimension, the Hamiltonian is given byH=p

2
2 m+
V(x). Compute the commutator [H,X] whereXis the position operator.
c) Compute< ui|P|ui>the mean momentum in the state|ui>.

5.*Att= 0, a particle of massmis in the Harmonic Oscillator stateψ(t= 0) =√^12 (u 0 +u 1 ).
Use the Heisenberg picture to find the expected value ofxas a function of time.

Free download pdf