state of the particle and on the potential.
Answer
d〈A〉
dt
=
1
i ̄h
〈[A,H]〉
d〈x〉
dt
=
1
i ̄h
〈[
x,
p^2
2 m
]〉
=
1
i ̄h
〈
p
m
(
− ̄h
i
)〉
=
〈p〉
m
d〈p〉
dt
=
1
i ̄h
〈[p,V(x)]〉=
1
i ̄h
̄h
i
〈[
d
dx
,V(x)]〉
= −
〈
dV
dx
〉
- Compute the commutators [A†,An] and [A,eiHt] for the 1D harmonic oscillator.
Answer
[A†,An] = n[A†,A]An−^1 =−nAn−^1
[A,eiHt] = [A,
∑∞
n=0
(it)nHn
n!
] =
∑∞
n=0
(it)n[A,Hn]
n!
=
∑∞
n=0
n(it)n[A,H]Hn−^1
n!
=it
∑∞
n=1
(it)n−^1 ̄hωAHn−^1
(n−1)!
it
∑∞
n=1
(it)n−^1 ̄hωAHn−^1
(n−1)!
= it ̄hωA
∑∞
n=1
(it)n−^1 Hn−^1
(n−1)!
= it ̄hωA
∑∞
n=0
(it)nHn
(n)!
=it ̄hωAeiHt
4.*Assume that the states|ui>are the eigenstates of the Hamiltonian with eigenvaluesEi,
(H|ui>=Ei|ui>).
a) Prove that< ui|[H,A]|ui>= 0 for an arbitrary linear operatorA.
b) For a particle of massmmoving in 1-dimension, the Hamiltonian is given byH=p
2
2 m+
V(x). Compute the commutator [H,X] whereXis the position operator.
c) Compute< ui|P|ui>the mean momentum in the state|ui>.
5.*Att= 0, a particle of massmis in the Harmonic Oscillator stateψ(t= 0) =√^12 (u 0 +u 1 ).
Use the Heisenberg picture to find the expected value ofxas a function of time.