130_notes.dvi

(Frankie) #1
∇~ 2 =−~∇r+ m^2
m 1 +m 2

∇~R

Putting this into theHamiltonianwe get


H=

− ̄h^2
2 m 1

[

~∇^2 r+

(

m 1
m 1 +m 2

) 2

∇~^2 R+^2 m^1
m 1 +m 2

∇~r·∇~R

]

+

− ̄h^2
2 m 2

[

∇~^2 r+

(

m 2
m 1 +m 2

) 2

~∇^2 R−^2 m^2
m 1 +m 2

~∇r·~∇R

]

+V(~r)

H=− ̄h^2

[(

1

2 m 1

+

1

2 m 2

)

∇~^2 r+ m^1 +m^2
2(m 1 +m 2 )^2

∇~^2 R

]

+V(~r).

Defining thereduced massμ


1

μ

=

1

m 1

+

1

m 2

and the total mass


M=m 1 +m 2

we get.


H=−

̄h^2
2 μ
∇~^2 r− ̄h

2
2 M
∇~^2 R+V(~r)

The Hamiltonian actuallyseparates into two problems: the motion of thecenter of massas a
free particle


H=

− ̄h^2
2 M

∇~^2 R

and theinteraction between the two particles.


H=−

̄h^2
2 μ

∇~^2 r+V(~r)

This is exactly the same separation that we would make in classical physics.

Free download pdf