∫
dΩYℓm∗Yℓ′m′=δℓℓ′δmm′
We will use theactual functionin some problems.
Y 00 =
1
√
4 π
Y 11 = −
√
3
8 π
eiφsinθ
Y 10 =
√
3
4 π
cosθ
Y 22 =
√
15
32 π
e^2 iφsin^2 θ
Y 21 = −
√
15
8 π
eiφsinθcosθ
Y 20 =
√
5
16 π
(3 cos^2 θ−1)
The spherical harmonics with negativemcan be easily compute from those with positivem.
Yℓ(−m)= (−1)mYℓm∗
Any function ofθandφcan beexpanded in the spherical harmonics.
f(θ,φ) =
∑∞
ℓ=0
∑ℓ
m=−ℓ
CℓmYℓm(θ,φ)
The spherical harmonics form acomplete set.
∑∞
ℓ=0
∑ℓ
m=−ℓ
|Yℓm〉 〈Yℓm|=
∑∞
ℓ=0
∑ℓ
m=−ℓ
|ℓm〉 〈ℓm|= 1
When using bra-ket notation,|ℓm〉is sufficient to identify the state.
The spherical harmonics arerelated to the Legendre polynomialswhich are functions ofθ.
Yℓ 0 (θ,φ) =
(
2 ℓ+ 1
4 π
)^12
Pℓ(cosθ)
Yℓm = (−1)m
[
2 ℓ+ 1
4 π
(ℓ−m)!
(ℓ+m)!
]^12
Pℓm(cosθ)eimφ