Bringing together the above results, we have.
∂
∂x
= sinθcosφ
∂
∂r
+
1
r
cosφcosθ
∂
∂θ
−
1
r
sinφ
sinθ
∂
∂φ
∂
∂y
= sinθsinφ
∂
∂r
+
1
r
sinφcosθ
∂
∂θ
+
1
r
cosφ
sinθ
∂
∂φ
∂
∂z
= cosθ
∂
∂r
−
1
r
sinθ
∂
∂θ
Now simply plug these into the angular momentum formulae.
Lz =
̄h
i
(
x
∂
∂y
−y
∂
∂x
)
=
̄h
i
∂
∂φ
L± = Lx±iLy=
̄h
i
(
y
∂
∂z
−z
∂
∂y
±i
(
z
∂
∂x
−x
∂
∂z
))
=
̄h
i
(
(y∓ix)
∂
∂z
−z
(
∂
∂y
∓i
∂
∂x
))
= ̄h
(
∓(x±iy)
∂
∂z
±z
(
∂
∂x
±i
∂
∂y
))
= ̄hr
(
∓sinθe±iφ
∂
∂z
±cosθ
(
∂
∂x
±i
∂
∂y
))
= ̄h
(
∓sinθe±iφ
(
rcosθ
∂
∂r
−sinθ
∂
∂θ
)
±cosθ
(
rsinθe±iφ
∂
∂r
+ cosθe±iφ
∂
∂θ
±
ie±iφ
sinθ
∂
∂φ
))
= ̄he±iφ
(
±sin^2 θ
∂
∂θ
±
(
cos^2 θ
∂
∂θ
±
icosθ
sinθ
∂
∂φ
))
= ̄he±iφ
(
±
∂
∂θ
+icotθ
∂
∂φ
)
We will use these results to find the actual eigenfunctions of angular momentum.
Lz =
̄h
i
∂
∂φ
L± = ̄he±iφ
(
±
∂
∂θ
+icotθ
∂
∂φ
)
14.4.5 The OperatorsL±
The next step is to figure out how theL±operators change the eigenstateYℓm. What eigenstates
ofL^2 are generated when we operate withL+orL−?
L^2 (L±Yℓm) =L±L^2 Yℓm=ℓ(ℓ+ 1) ̄h^2 (L±Yℓm)
BecauseL^2 commutes withL±, we see that we have the sameℓ(ℓ+ 1) after operation. This is also
true for operations withLz.
L^2 (LzYℓm) =LzL^2 Yℓm=ℓ(ℓ+ 1) ̄h^2 (LzYℓm)