130_notes.dvi

(Frankie) #1

Bringing together the above results, we have.



∂x
= sinθcosφ


∂r

+

1

r
cosφcosθ


∂θ


1

r

sinφ
sinθ


∂φ

∂y

= sinθsinφ


∂r

+

1

r

sinφcosθ


∂θ

+

1

r

cosφ
sinθ


∂φ

∂z

= cosθ


∂r


1

r

sinθ


∂θ

Now simply plug these into the angular momentum formulae.


Lz =

̄h
i

(

x


∂y

−y


∂x

)

=

̄h
i


∂φ

L± = Lx±iLy=


̄h
i

(

y


∂z
−z


∂y
±i

(

z


∂x
−x


∂z

))

=

̄h
i

(

(y∓ix)


∂z
−z

(


∂y
∓i


∂x

))

= ̄h

(

∓(x±iy)


∂z
±z

(


∂x
±i


∂y

))

= ̄hr

(

∓sinθe±iφ


∂z

±cosθ

(


∂x

±i


∂y

))

= ̄h

(

∓sinθe±iφ

(

rcosθ


∂r

−sinθ


∂θ

)

±cosθ

(

rsinθe±iφ


∂r

+ cosθe±iφ


∂θ

±

ie±iφ
sinθ


∂φ

))

= ̄he±iφ

(

±sin^2 θ


∂θ

±

(

cos^2 θ


∂θ

±

icosθ
sinθ


∂φ

))

= ̄he±iφ

(

±


∂θ

+icotθ


∂φ

)

We will use these results to find the actual eigenfunctions of angular momentum.


Lz =

̄h
i


∂φ

L± = ̄he±iφ

(

±


∂θ

+icotθ


∂φ

)

14.4.5 The OperatorsL±


The next step is to figure out how theL±operators change the eigenstateYℓm. What eigenstates
ofL^2 are generated when we operate withL+orL−?


L^2 (L±Yℓm) =L±L^2 Yℓm=ℓ(ℓ+ 1) ̄h^2 (L±Yℓm)

BecauseL^2 commutes withL±, we see that we have the sameℓ(ℓ+ 1) after operation. This is also
true for operations withLz.


L^2 (LzYℓm) =LzL^2 Yℓm=ℓ(ℓ+ 1) ̄h^2 (LzYℓm)
Free download pdf