130_notes.dvi

(Frankie) #1

The raising and lowering operators changemin integer steps, so, starting fromm=−ℓ, there will
be states in integer steps up toℓ.


m=−ℓ,−ℓ+ 1,...,ℓ− 1 ,ℓ

Having the minimum at−ℓand the maximum at +ℓwith integer steps only works ifℓis an integer
or a half-integer. There are 2ℓ+ 1 states with the sameℓand different values ofm. We now know
what eigenstates are allowed.


The eigenstates ofL^2 andLzshould be normalized


〈Yℓm|Yℓm〉= 1.

The raising and lowering operators acting onYℓmgive


L±Yℓm=C±(ℓ,m)Yℓ(m±1)

The coefficientC±(ℓ,m) can be computed.


〈L±Yℓm|L±Yℓm〉 = |C(ℓ,m)|^2 〈Yℓ(m±1)|Yℓ(m±1)〉
= |C(ℓ,m)|^2
〈L±Yℓm|L±Yℓm〉 = 〈Yℓm|L∓L±Yℓm〉
= 〈Yℓm|(L^2 −L^2 z∓ ̄hLz)Yℓm〉
= (ℓ(ℓ+ 1)−m^2 ∓m) ̄h^2
|C(ℓ,m)|^2 =

(

ℓ(ℓ+ 1)−m^2 ∓m

)

̄h^2
C±(l,m) = ̄h


ℓ(ℓ+ 1)−m(m±1)

We now have the effect of the raising and lowering operators in termsof the normalized eigenstates.


L±Yℓm= ̄h


ℓ(ℓ+ 1)−m(m±1)Yℓ(m±1)

14.5 Examples


14.5.1 The Expectation Value ofLz


What is the expectation value ofLzin the stateψ(~r) =R(r)(



2
3 Y^11 (θ,φ)−i


1
3 Y^1 −^1 (θ,φ))?

The radial part plays no role. The angular part is properly normalized.


〈ψ|Lz|ψ〉 =

〈√

2

3

Y 11 −i


1

3

Y 1 − 1 |Lz|


2

3

Y 11 −i


1

3

Y 1 − 1


=

〈√

2

3

Y 11 −i


1

3

Y 1 − 1 |


2

3

̄hY 11 +i


1

3

̄hY 1 − 1


=

(

2

3


1

3

)

̄h=

1

3

̄h
Free download pdf