14.5.2 The Expectation Value ofLx
What is the expectation value ofLxin the stateψ(~r) =R(r)(
√
2
3 Y^11 (θ,φ)−
√
1
3 Y^10 (θ,φ))?
We needLx= (L++L−)/2.
〈ψ|Lx|ψ〉 =
1
2
〈√
2
3
Y 11 −
√
1
3
Y 10 |L++L−|
√
2
3
Y 11 −
√
1
3
Y 10
〉
=
1
2
〈√
2
3
Y 11 −
√
1
3
Y 10 |
√
2
3
L−Y 11 −
√
1
3
L+Y 10
〉
=
̄h
2
〈√
2
3
Y 11 −
√
1
3
Y 10 |
√
2
3
√
2 Y 10 −
√
1
3
√
2 Y 11
〉
=
̄h
2
2
3
(− 1 −1) =−
2
3
̄h
14.6 Sample Test Problems
- Derive the commutators [L^2 ,L+] and [Lz,L+]. Now show thatL+Yℓm=CYℓ(m+1), that is,
L+raises theLzeigenvalue but does not change theL^2 eigenvalue.
Answer
L+=Lx+iLy
SinceL^2 commutes with bothLxandLy,
[L^2 ,L+] = 0.
[Lz,L+] = [Lz,Lx+iLy] = [Lz,Lx] +i[Lz,Ly] =i ̄h(Ly−iLx) = ̄h(Lx+iLy) = ̄hL+
We have the commutators. Now we apply them to aYℓm.
[L^2 ,L+]Yℓm=L^2 L+Yℓm−L+L^2 Yℓm= 0
L^2 (L+Yℓm) =ℓ(ℓ+ 1) ̄h^2 (L+Yℓm)
So,L+Yℓmis also an eigenfunction ofL^2 with the same eigenvalue.L+does not changeℓ.
[Lz,L+]Yℓm=LzL+Yℓm−L+LzYℓm= ̄hL+Yℓm
Lz(L+Yℓm)−m ̄h(L+Yℓm) = ̄h(L+Yℓm)
Lz(L+Yℓm) = (m+ 1) ̄h(L+Yℓm)
So,L+raises the eigenvalue ofLz.
- Write the (normalized) state which is an eigenstate ofL^2 with eigenvalueℓ(ℓ+1) ̄h^2 = 2 ̄h^2 and
also aneigenstate ofLxwith eigenvalue 0 ̄hin terms of the usualYℓm.
Answer