130_notes.dvi

(Frankie) #1

Thecoefficient of each power ofρmust be zero, so we can derive therecursion relationfor
the constantsak.


ak+1
ak

=

k+ℓ+ 1−λ
(k+ℓ+ 1)(k+ℓ) + 2(k+ℓ+ 1)−ℓ(ℓ+ 1)

=

k+ℓ+ 1−λ
k(k+ 2ℓ+ 1) + 2(k+ℓ+ 1)

=

k+ℓ+ 1−λ
k(k+ 2ℓ+ 2) + (k+ 2ℓ+ 2)

=

k+ℓ+ 1−λ
(k+ 1)(k+ 2ℓ+ 2)


1

k

This is then the power series for
G(ρ)→ρℓeρ


unless it somehow terminates. We canterminate the seriesif for some value ofk=nr,


λ=nr+ℓ+ 1≡n.

The number of nodes inGwill benr. We will callnthe principal quantum number, since the energy
will depend only onn.


Plugging in forλwe get theenergy eigenvalues.




−μc^2
2 E
=n.

E=−

1

2 n^2

Z^2 α^2 μc^2

Thesolutionsare


Rnℓ(ρ) =ρℓ

∑∞

k=0

akρke−ρ/^2.

The recursion relation is


ak+1=

k+ℓ+ 1−n
(k+ 1)(k+ 2ℓ+ 2)

ak.

We can rewriteρ, substituting the energy eigenvalue.


ρ=


− 8 μE
̄h^2

r=


4 μ^2 c^2 Z^2 α^2
̄h^2 n^2

r=

2 μcZα
̄hn

r=

2 Z

na 0

r

16.3.2 Computing the Radial Wavefunctions*


The radial wavefunctions are given by


R(ρ) =ρℓ

n−∑ℓ− 1

k=0

akρke−ρ/^2
Free download pdf