Thecoefficient of each power ofρmust be zero, so we can derive therecursion relationfor
the constantsak.
ak+1
ak
=
k+ℓ+ 1−λ
(k+ℓ+ 1)(k+ℓ) + 2(k+ℓ+ 1)−ℓ(ℓ+ 1)
=
k+ℓ+ 1−λ
k(k+ 2ℓ+ 1) + 2(k+ℓ+ 1)
=
k+ℓ+ 1−λ
k(k+ 2ℓ+ 2) + (k+ 2ℓ+ 2)
=
k+ℓ+ 1−λ
(k+ 1)(k+ 2ℓ+ 2)
→
1
k
This is then the power series for
G(ρ)→ρℓeρ
unless it somehow terminates. We canterminate the seriesif for some value ofk=nr,
λ=nr+ℓ+ 1≡n.
The number of nodes inGwill benr. We will callnthe principal quantum number, since the energy
will depend only onn.
Plugging in forλwe get theenergy eigenvalues.
Zα
√
−μc^2
2 E
=n.
E=−
1
2 n^2
Z^2 α^2 μc^2
Thesolutionsare
Rnℓ(ρ) =ρℓ
∑∞
k=0
akρke−ρ/^2.
The recursion relation is
ak+1=
k+ℓ+ 1−n
(k+ 1)(k+ 2ℓ+ 2)
ak.
We can rewriteρ, substituting the energy eigenvalue.
ρ=
√
− 8 μE
̄h^2
r=
√
4 μ^2 c^2 Z^2 α^2
̄h^2 n^2
r=
2 μcZα
̄hn
r=
2 Z
na 0
r
16.3.2 Computing the Radial Wavefunctions*
The radial wavefunctions are given by
R(ρ) =ρℓ
n−∑ℓ− 1
k=0
akρke−ρ/^2