Thecoefficient of each power ofρmust be zero, so we can derive therecursion relationfor
the constantsak.
ak+1
ak=
k+ℓ+ 1−λ
(k+ℓ+ 1)(k+ℓ) + 2(k+ℓ+ 1)−ℓ(ℓ+ 1)=k+ℓ+ 1−λ
k(k+ 2ℓ+ 1) + 2(k+ℓ+ 1)=
k+ℓ+ 1−λ
k(k+ 2ℓ+ 2) + (k+ 2ℓ+ 2)=k+ℓ+ 1−λ
(k+ 1)(k+ 2ℓ+ 2)→
1
kThis is then the power series for
G(ρ)→ρℓeρ
unless it somehow terminates. We canterminate the seriesif for some value ofk=nr,
λ=nr+ℓ+ 1≡n.The number of nodes inGwill benr. We will callnthe principal quantum number, since the energy
will depend only onn.
Plugging in forλwe get theenergy eigenvalues.
Zα√
−μc^2
2 E
=n.E=−1
2 n^2Z^2 α^2 μc^2Thesolutionsare
Rnℓ(ρ) =ρℓ∑∞
k=0akρke−ρ/^2.The recursion relation is
ak+1=k+ℓ+ 1−n
(k+ 1)(k+ 2ℓ+ 2)ak.We can rewriteρ, substituting the energy eigenvalue.
ρ=√
− 8 μE
̄h^2r=√
4 μ^2 c^2 Z^2 α^2
̄h^2 n^2r=2 μcZα
̄hnr=2 Z
na 0r16.3.2 Computing the Radial Wavefunctions*
The radial wavefunctions are given by
R(ρ) =ρℓn−∑ℓ− 1k=0akρke−ρ/^2