ak+1=
k+ℓ+ 1−n
(k+ 1)(k+ 2ℓ+ 2)
ak
a 1 =
0 + 0 + 1− 2
(0 + 1)(0 + 2(0) + 2)
a 0 =
− 1
2
a 0
R 20 (r) =C
(
1 −
Zr
2 a 0
)
e−Zr/^2 a^0
We again normalize to determine the constant.
16.4 Examples
16.4.1 Expectation Values in Hydrogen States
Anelectron in the Coulomb field of a protonis in the state described by the wave function
1
6 (4ψ^100 + 3ψ^211 −iψ^210 +
√
10 ψ 21 − 1 ). Find the expected value of the Energy,L^2 ,Lz, andLy.
First check the normalization.
| 4 |^2 +| 3 |^2 +|−i|^2 +|
√
10 |^2
36
=
36
36
= 1
The terms are eigenstates ofE,L^2 , andLz, so we can easily compute expectation values of those
operators.
En = −
1
2
α^2 μc^2
1
n^2
〈E〉 = −
1
2
α^2 μc^2
16112 + 9 212 + 1 212 + 10 212
36
=−
1
2
α^2 μc^2
21
36
=−
1
2
α^2 μc^2
7
12
Similarly, we can just square probability amplitudes to compute the expectation value ofL^2. The
eigenvalues areℓ(ℓ+ 1) ̄h^2.
〈L^2 〉= ̄h^2
16(0) + 9(2) + 1(2) + 10(2)
36
=
10
9
̄h^2
The Eigenvalues ofLzarem ̄h.
〈Lz〉= ̄h
16(0) + 9(1) + 1(0) + 10(−1)
36
=
− 1
36
̄h
Computing the expectation value ofLyis harder because the states are not eigenstates ofLy. We
must writeLy= (L+−L−)/ 2 iand compute.
〈Ly〉 =
1
72 i
〈 4 ψ 100 + 3ψ 211 −iψ 210 +
√
10 ψ 21 − 1 |L+−L−| 4 ψ 100 + 3ψ 211 −iψ 210 +
√
10 ψ 21 − 1 〉
=
1
72 i
〈 4 ψ 100 + 3ψ 211 −iψ 210 +
√
10 ψ 21 − 1 |− 3 L−ψ 211 −i(L+−L−)ψ 210 +
√
10 L+ψ 21 − 1 〉