S+ = ̄h
(
0 1
0 0
)
S−χ− = 0
S−χ+ =
√
s(s+ 1)−m(m−1) ̄hχ−= ̄hχ−
S− = ̄h
(
0 0
1 0
)
We can now calculateSxandSy.
Sx=
1
2
(S++S−) =
̄h
2
(
0 1
1 0
)
Sy=
1
2 i
(S+−S−) =
̄h
2
(
0 −i
i 0
)
These are again Hermitian, Traceless matrices.
18.11.7Derive Spin^12 Rotation Matrices*.
In section 18.11.3, we derived the expression for the rotation operator for orbital angular momentum
vectors. The rotation operators for internal angular momentumwill follow the same formula.
Rz(θ) = e
iθSz
h ̄ =eiθ 2 σz
Rx(θ) = ei
θ 2 σx
Ry(θ) = ei
θ 2 σy
ei
θ 2 σj
=
∑∞
n=0
(iθ
2
)n
n!
σnj
We now can compute the series by looking at the behavior ofσjn.
σz =
(
1 0
0 − 1
)
σ^2 z=
(
1 0
0 1
)
σy =
(
0 −i
i 0
)
σy^2 =
(
1 0
0 1
)
σx =
(
0 1
1 0
)
σ^2 x=
(
1 0
0 1
)
Doing the sums
Rz(θ) = ei
θ 2 σz
=
∑∞
n=0
(iθ 2 )n
n!^0
0
∑∞
n=0
(− 2 iθ)n
n!
=
(
ei
θ 2
0
0 e−i
θ 2
)
Ry(θ) =
∑∞
n=0, 2 , 4 ...
(iθ 2 )n
n! −i
∑∞
n=1, 3 , 5 ...
(iθ 2 )n
n!
i
∑∞
n=1, 3 , 5 ...
(iθ 2 )n
n!
∑∞
n=0, 2 , 4 ...
(iθ 2 )n
n!
=
(
cosθ 2 sinθ 2
−sinθ 2 cosθ 2