130_notes.dvi

(Frankie) #1
S+ = ̄h

(

0 1

0 0

)

S−χ− = 0
S−χ+ =


s(s+ 1)−m(m−1) ̄hχ−= ̄hχ−

S− = ̄h

(

0 0

1 0

)

We can now calculateSxandSy.


Sx=

1

2

(S++S−) =

̄h
2

(

0 1

1 0

)

Sy=

1

2 i

(S+−S−) =

̄h
2

(

0 −i
i 0

)

These are again Hermitian, Traceless matrices.


18.11.7Derive Spin^12 Rotation Matrices*.


In section 18.11.3, we derived the expression for the rotation operator for orbital angular momentum
vectors. The rotation operators for internal angular momentumwill follow the same formula.


Rz(θ) = e

iθSz
h ̄ =eiθ 2 σz

Rx(θ) = ei

θ 2 σx

Ry(θ) = ei
θ 2 σy

ei

θ 2 σj
=

∑∞

n=0

(iθ
2

)n

n!

σnj

We now can compute the series by looking at the behavior ofσjn.


σz =

(

1 0

0 − 1

)

σ^2 z=

(

1 0

0 1

)

σy =

(

0 −i
i 0

)

σy^2 =

(

1 0

0 1

)

σx =

(

0 1

1 0

)

σ^2 x=

(

1 0

0 1

)

Doing the sums


Rz(θ) = ei

θ 2 σz
=




∑∞

n=0

(iθ 2 )n
n!^0

0

∑∞

n=0

(− 2 iθ)n
n!



=

(

ei
θ 2
0
0 e−i
θ 2

)

Ry(θ) =





∑∞

n=0, 2 , 4 ...

(iθ 2 )n
n! −i

∑∞

n=1, 3 , 5 ...

(iθ 2 )n
n!

i

∑∞

n=1, 3 , 5 ...

(iθ 2 )n
n!

∑∞

n=0, 2 , 4 ...

(iθ 2 )n
n!




=

(

cosθ 2 sinθ 2
−sinθ 2 cosθ 2

)
Free download pdf