From the symmetry of the problem, we can guess (and verify) that[H,pz] = [H,Lz] = 0. These
variables will be constants of the motion and we therefore choose
ψ(~r) = umk(ρ)eimφeikz.Lzψ =̄h
i∂
∂φ
ψ=m ̄hψpzψ =̄h
i∂
∂zψ= ̄hkψ∇^2 ψ = −k^2 ψ−m^2
ρ^2ψ+∂^2 u
∂ρ^2eimφeikz+1
ρ∂u
∂ρeimφeikzd^2 u
dρ^2+
1
ρdu
dρ−
m^2
ρ^2u−
e^2 B^2
4 ̄h^2 c^2ρ^2 u+(
2 meE
̄h^2−
eBm
̄hc−k^2)
u= 0Letx=
√
eB
2 ̄hcρ(dummy variable, not the coordinate) andλ=4 mec
eB ̄h(
E− ̄h(^2) k 2
2 me
)
− 2 m. Thend^2 u
dx^2+
1
xdu
dx−
m^2
x^2u−x^2 u+λ= 0In the limitx→∞,
d^2 u
dx^2
−x^2 u= 0 ⇒ u∼e−x(^2) / 2
while in the other limitx→0,
d^2 u
dx^2
+
1
xdu
dx−
m^2
x^2u= 0Try a solution of the formxs. Then
s(s−1)xs−^2 +sxs−^2 −m^2 xs−^2 = 0 ⇒ s^2 =m^2A well behaved function⇒s≥ 0 ⇒s=|m|
u(x) =x|m|e−x(^2) / 2
G(x)
Plugging this in, we have
d^2 G
dx^2
+
(
2 |m|+ 1
x− 2 x)
dG
dx+ (λ− 2 − 2 |m|)G= 0We canturn this into the hydrogen equationfor
y=x^2and hence
dy= 2x dx
d
dy
=
1
2 xd
dx.
Transforming the equation we get
d^2 G
dy^2+
(
|m|+ 1
y− 1
)
dG
dy+
λ− 2 − 2 |m|
4 yG= 0.
Compare this to the equation we had for hydrogen
d^2 H
dρ^2+
(
2 ℓ+ 2
ρ− 1
)
dH
dρ+
λ− 1 −ℓ
ρ