130_notes.dvi

(Frankie) #1

28 Time Dependent Perturbation Theory


We have used time independent perturbation theory to find the energy shifts of states and to find
the change in energy eigenstates in the presence of a small perturbation. We will now consider the
case of a perturbation that is time dependent. Such a perturbation can cause transitions between
energy eigenstates. We will calculate the rate of those transitions.


This material is covered inGasiorowicz Chapter 21,inCohen-Tannoudji et al. Chapter
XIII,and briefly in Griffiths Chapter 9.


28.1 General Time Dependent Perturbations


Assume that we solve the unperturbed energy eigenvalue problem exactly:H 0 φn=Enφn. Now we
add a perturbation that depends on time,V(t). Our problem is now inherently time dependent so
we go back to thetime dependent Schr ̈odinger equation.


(H 0 +V(t))ψ(t) =i ̄h

∂ψ(t)
∂t

We willexpandψin terms of the eigenfunctions:ψ(t) =



k

ck(t)φke−iEkt/ ̄hwithck(t)e−iEkt/ ̄h=

〈φk|ψ(t)〉. The time dependent Schr ̈odinger equations is



k

(H 0 +V(t))ck(t)e−iEkt/ ̄hφk = i ̄h


k

∂ck(t)e−iEkt/ ̄h
∂t

φk


k

ck(t)e−iEkt/ ̄h(Ek+V(t))φk =


k

(

i ̄h

∂ck(t)
∂t
+Ekck(t)

)

e−iEkt/ ̄hφk


k

V(t)ck(t)e−iEkt/ ̄hφk = i ̄h


k

∂ck(t)
∂t

e−iEkt/ ̄hφk

Now dot〈φn|into this equation to get the time dependence of one coefficient.



k

Vnk(t)ck(t)e−iEkt/ ̄h = i ̄h
∂cn(t)
∂t

e−iEnt/ ̄h

∂cn(t)
∂t

=

1

i ̄h


k

Vnk(t)ck(t)ei(En−Ek)t/ ̄h

Assume that att= 0, we are in aninitial stateψ(t= 0) =φiand hence all the otherckare equal
to zero:ck=δki.


∂cn(t)
∂t

=

1

i ̄h


Vni(t)eiωnit+


k 6 =i

Vnk(t)ck(t)eiωnkt


Free download pdf