×
∫t0dt 2 ei(ωni+ω′−ω)t 2We have calculated all the amplitudes. Thefirst order and second order amplitudes should
be combined, then squared.
cn(t) = c(1)n (t) +c(2)n (t)c(1)n;~k′ˆǫ′(t) =e^2
2 iV m√
ω′ωˆǫ·ˆǫ′δni∫t0ei(ωni+ω′−ω)t′
dt′c(2)n;~k′ˆǫ′(t) =
−e^2
2 iV m^2 ̄h√
ω′ω∑
j[
〈n|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω+
〈n|ˆǫ·~p|j〉〈j|ǫˆ′·~p|i〉
ω′+ωji]∫t0dt 2 ei(ωni+ω′−ω)t 2cn;~k′ˆǫ′(t) =
δniˆǫ·ˆǫ′−^1
m ̄h∑
j[
〈n|ˆǫ′·~p|j〉〈j|ǫˆ·~p|i〉
ωji−ω+
〈n|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ω′+ωji]
×
e^2
2 iV m√
ω′ω∫t0dt 2 ei(ωni+ω′−ω)t 2|c(t)|^2 =∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−1
m ̄h∑
j[
〈n|ǫˆ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω+
〈n|ˆǫ·~p|j〉〈j|ǫˆ′·~p|i〉
ω′+ωji]
∣ ∣ ∣ ∣ ∣ ∣
2×
e^4
4 V^2 m^2 ω′ω∣ ∣ ∣ ∣ ∣ ∣
∫t0dt 2 ei(ωni+ω′−ω)t 2∣ ∣ ∣ ∣ ∣ ∣
2|c(t)|^2 =∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−1
m ̄h∑
j[
〈n|ǫˆ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω+
〈n|ˆǫ·~p|j〉〈j|ǫˆ′·~p|i〉
ω′+ωji]
∣ ∣ ∣ ∣ ∣ ∣
2×
e^4
4 V^2 m^2 ω′ω2 πtδ(ωni+ω′−ω)Γ =
∫
V d^3 k′
(2π)^3∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−1
m ̄h∑
j[
〈n|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω+
〈n|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ω′+ωji]
∣ ∣ ∣ ∣ ∣ ∣
2×
e^4
4 V^2 m^2 ω′ω2 πδ(ωni+ω′−ω)Γ =
∫
V ω′^2 dω′dΩ
(2πc)^3∣ ∣ ∣ ∣ ∣ ∣
δniˆǫ·ˆǫ′−1
m ̄h∑
j[
〈n|ˆǫ′·~p|j〉〈j|ˆǫ·~p|i〉
ωji−ω+
〈n|ˆǫ·~p|j〉〈j|ˆǫ′·~p|i〉
ω′+ωji]
∣ ∣ ∣ ∣ ∣ ∣
2×
e^4
4 V^2 m^2 ω′ω2 πδ(ωni+ω′−ω)