Now take the sum and the difference of the two equations.
i ̄h~σ·∇~(φ(L)−φ(R))−i ̄h
∂
∂x 0
(φ(R)+φ(L)) +mc(φ(R)+φ(L)) = 0
i ̄h~σ·∇~(φ(R)+φ(L))−i ̄h
∂
∂x 0
(φ(L)−φ(R)) +mc(φ(R)−φ(L)) = 0
Now rewriting in terms ofψA=φ(R)+φ(L)andψB =φ(R)−φ(L)and ordering it as a matrix
equation, we get.
−i ̄h~σ·∇~(φ(R)−φ(L))−i ̄h
∂
∂x 0
(φ(R)+φ(L)) +mc(φ(R)+φ(L)) = 0
i ̄h~σ·∇~(φ(R)+φ(L)) +i ̄h
∂
∂x 0
(φ(R)−φ(L)) +mc(φ(R)−φ(L)) = 0
−i ̄h
∂
∂x 0
(φ(R)+φ(L))−i ̄h~σ·∇~(φ(R)−φ(L)) +mc(φ(R)+φ(L)) = 0
i ̄h~σ·∇~(φ(R)+φ(L)) +i ̄h
∂
∂x 0
(φ(R)−φ(L)) +mc(φ(R)−φ(L)) = 0
−i ̄h
∂
∂x 0
ψA−i ̄h~σ·∇~ψB+mcψA= 0
i ̄h~σ·∇~ψA+i ̄h
∂
∂x 0
ψB+mcψB= 0
(
−i ̄h∂x∂ 0 −i ̄h~σ·∇~
i ̄h~σ·∇~ i ̄h∂x∂ 0
)(
ψA
ψB
)
+mc
(
ψA
ψB
)
= 0
Remember thatψAandψBare two component spinors sothis is an equation in 4 components.
We can rewrite the matrix above as a dot product between 4-vectors. The matrix has a dot product
in 3 dimensions and a time component
(
−i ̄h∂x∂ 0 −i ̄h~σ·∇~
i ̄h~σ·∇~ i ̄h∂x∂ 0
)
= ̄h
[(
0 −i~σ·∇~
i~σ·∇~ 0
)
+
( ∂
∂x 4 0
0 −∂x∂ 4
)]
= ̄h
[(
0 −iσi
iσi 0
)
∂
∂xi
+
(
1 0
0 − 1
)
∂
∂x 4
]
= ̄h
[
γμ
∂
∂xμ
]
The4 by 4 matricesγμare given by.
γi =
(
0 −iσi
iσi 0
)
γ 4 =
(
1 0
0 − 1
)
With this definition, the relativistic equation can be simplified a great deal.
(
−i ̄h∂x∂ 0 −i ̄h~σ·∇~
i ̄h~σ·∇~ i ̄h∂x∂ 0
)(
ψA
ψB
)
+mc
(
ψA
ψB
)
= 0
ψ=
(
ψA
ψB
)
≡
ψ 1
ψ 2
ψ 3
ψ 4