We will be attempting to get the correct Schr ̈odinger equation to orderα^4 , like the one we used to
calculate the fine structure in Hydrogen. Since this energy term weare expanding is multiplied in
the equation byp^2 , we only need the first two terms in the expansion (order 1 and orderα^2 ).
~σ·~p
1
2 m
(
1 −
E(NR)+eA 0
2 mc^2
)
~σ·~pψA = (E(NR)+eA 0 )ψA
Thenormalization conditionwe derive from the Dirac equation is
j 0 =ψγ ̄ 4 ψ=ψ†γ 4 γ 4 ψ=ψ†ψ=ψ†AψA+ψ†BψB= 1.
ψB≈
pc
2 mc^2
ψA
ψA†ψA+ψB†ψB≈
(
1 +
( pc
2 mc^2
) 2 )
ψA†ψA= 1
(
1 +
p^2
4 m^2 c^2
)
ψA†ψA= 1
ψ≡
(
1 +
p^2
8 m^2 c^2
)
ψA
ψA≡
(
1 −
p^2
8 m^2 c^2
)
ψ
We’ve definedψ, the 2 component wavefunction we will use, in terms ofψAso that it is properly
normalized, at least to orderα^4. We cannow replaceψAin the equation.
~σ·~p
1
2 m
(
1 −
E(NR)+eA 0
2 mc^2
)
~σ·~p
(
1 −
p^2
8 m^2 c^2
)
ψ = (E(NR)+eA 0 )
(
1 −
p^2
8 m^2 c^2
)
ψ
This equation is correct, but not exactly what we want for the Schr ̈odinger equation. In particular,
we want toisolate the non-relativistic energy on the right of the equationwithout other
operators. We can solve the problem by multiplying both sides of the equation by
(
1 − p
2
8 m^2 c^2
)
.
(
1 −
p^2
8 m^2 c^2
)
~σ·~p
1
2 m
(
1 −
E(NR)+eA 0
2 mc^2
)
~σ·~p
(
1 −
p^2
8 m^2 c^2
)
ψ
=
(
1 −
p^2
8 m^2 c^2
)
(E(NR)+eA 0 )
(
1 −
p^2
8 m^2 c^2
)
ψ
(
~σ·~p~σ·~p
2 m
−
p^2
8 m^2 c^2
~σ·~p~σ·~p
2 m
−
~σ·~p
2 m
E(NR)+eA 0
2 mc^2
~σ·~p−
~σ·~p~σ·~p
2 m
p^2
8 m^2 c^2
)
ψ
=
(
(E(NR)+eA 0 )−
p^2
4 m^2 c^2
E(NR)−
p^2
8 m^2 c^2
eA 0 −eA 0
p^2
8 m^2 c^2
)
ψ
(
p^2
2 m
−
p^2
8 m^2 c^2
p^2
2 m
−
p^2
2 m
E(NR)
2 mc^2
−
e~σ·~pA 0 ~σ·~p
4 m^2 c^2
−
p^2
2 m
p^2
8 m^2 c^2
)
ψ
=
(
(E(NR)+eA 0 )−
p^2
4 m^2 c^2
E(NR)−
p^2
8 m^2 c^2
eA 0 −eA 0
p^2
8 m^2 c^2
)
ψ
(
p^2
2 m
−
p^4
8 m^3 c^2
−eA 0 −
e~σ·~pA 0 ~σ·~p
4 m^2 c^2
)
ψ=
(
E(NR)−
p^2
8 m^2 c^2
eA 0 −eA 0
p^2
8 m^2 c^2
)
ψ