130_notes.dvi

(Frankie) #1

We again see that for a non-relativistic electron, the last two components are small compared to
the first. This solution is that for apositive energy electron. The fact that thelast two
components are non-zero does not mean it contains “negativeenergy” solutions.


If we make the upper two components those of aspin down electron, we get the next solution
following the same procedure.



−E+mc^20 pzc (px−ipy)c
0 −E+mc^2 (px+ipy)c −pzc
−pzc −(px−ipy)c E+mc^20
−(px+ipy)c pzc 0 E+mc^2







0

1

B 1

B 2



= 0




B 1 pzc+B 2 (px−ipy)c
−E+mc^2 +B 1 (px+ipy)c−B 2 pzc
−(px−ipy)c+B 1 (E+mc^2 )
pzc+B 2 (E+mc^2 )



= 0

B 1 =

(px−ipy)c
E+mc^2
B 2 =

−pzc
E+mc^2




pz(px−ipy)c^2 −pz(px−ipy)c^2
E+mc^2
−E+mc^2 + p

(^2) c 2
E+mc^2
0
0





= 0




0

−E^2 +(mc^2 )^2 +p^2 c^2
E+mc^2
0
0



= 0

E^2 =p^2 c^2 + (mc^2 )^2

u~p=N





0

1

(px−ipy)c
E+mc^2
−pzc
E+mc^2





u~p=0=N




0

1

0

0




This reduces to the spin down positive energy solution for a particle at rest as the momentum goes
to zero. The full solution is.


ψ(2)~p =N





0

1

(px−ipy)c
E+mc^2
−pzc
E+mc^2




e

i(~p·~x−Et)/ ̄h

Now we take a look at the“negative energy” spin up solutionin the same way.



−E+mc^20 pzc (px−ipy)c
0 −E+mc^2 (px+ipy)c −pzc
−pzc −(px−ipy)c E+mc^20
−(px+ipy)c pzc 0 E+mc^2







A 1

A 2

1

0



= 0
Free download pdf