κ^2 ̄h^2 −
̄h^2
4
= j(j+ 1) ̄h^2
κ^2 = j^2 +j+
1
4
κ = ±(j+
1
2
)
Kψ = ±(j+
1
2
)ψ
The eigenvalues ofKare
κ=±
(
j+
1
2
)
̄h.
We may explicitly write out the eigenvalue equation forKforκ=±
(
j+^12
)
̄h.
Kψ=−κ ̄hψ=
(
~σ·L~+ ̄h 0
0 −~σ·~L− ̄h
)(
ψA
ψB
)
=∓
(
j+
1
2
)
̄h
(
ψA
ψB
)
The difference betweenJ^2 andL^2 is related to~σ·L~.
L^2 =J^2 − ̄h~σ·L~−
3
4
̄h
We may solve for the effect of~σ·~Lon the spinorψ, then, solve for the effect ofL^2. Note that since
ψAandψBare eigenstates ofJ^2 and~σ·L~, they are eigenstates ofL^2 but have different eigenvalues.
(
~σ·~L+ ̄h 0
0 −~σ·~L− ̄h
)(
ψA
ψB
)
= ̄h
(
(±(j+^12 )ψA
(±(j+^12 )ψB
)
(
~σ·~L 0
0 −~σ·~L
)(
ψA
ψB
)
= ̄h
(
(±(j+^12 ∓1)ψA
(±(j+^12 ±1)ψB
)
~σ·~L
(
ψA
ψB
)
= ̄h
(
(±(j+^12 ∓1)ψA
(∓(j+^12 ±1)ψB
)
L^2
(
ψA
ψB
)
= j(j+ 1) ̄h^2
(
ψA
ψB
)
− ̄h^2
(
(±(j+^12 ∓1)ψA
(∓(j+^12 ±1)ψB
)
−
3
4
̄h^2
(
ψA
ψB
)
= ̄h^2
((
j(j+ 1)−
3
4
)(
ψA
ψB
)
−
(
(±(j+^12 ∓1)ψA
(∓(j+^12 ±1)ψB
))
= ̄h^2
(
(j(j+ 1)−^34 ∓(j+^12 ∓1))ψA
(j(j+ 1)−^34 ±(j+^12 ±1))ψB
)
= ̄h^2
(
(j^2 +j∓j∓^12 + 1−^34 )ψA
(j^2 +j±j±^12 + 1−^34 )ψB
)
= ̄h^2
(
(j^2 +j∓j∓^12 +^14 )ψA
(j^2 +j±j±^12 +^14 )ψB