130_notes.dvi

(Frankie) #1
κ^2 ̄h^2 −

̄h^2
4
= j(j+ 1) ̄h^2

κ^2 = j^2 +j+

1

4

κ = ±(j+

1

2

)

Kψ = ±(j+

1

2


The eigenvalues ofKare


κ=±

(

j+

1

2

)

̄h.

We may explicitly write out the eigenvalue equation forKforκ=±


(

j+^12

)

̄h.

Kψ=−κ ̄hψ=

(

~σ·L~+ ̄h 0
0 −~σ·~L− ̄h

)(

ψA
ψB

)

=∓

(

j+

1

2

)

̄h

(

ψA
ψB

)

The difference betweenJ^2 andL^2 is related to~σ·L~.


L^2 =J^2 − ̄h~σ·L~−

3

4

̄h

We may solve for the effect of~σ·~Lon the spinorψ, then, solve for the effect ofL^2. Note that since
ψAandψBare eigenstates ofJ^2 and~σ·L~, they are eigenstates ofL^2 but have different eigenvalues.
(
~σ·~L+ ̄h 0
0 −~σ·~L− ̄h


)(

ψA
ψB

)

= ̄h

(

(±(j+^12 )ψA
(±(j+^12 )ψB

)

(

~σ·~L 0
0 −~σ·~L

)(

ψA
ψB

)

= ̄h

(

(±(j+^12 ∓1)ψA
(±(j+^12 ±1)ψB

)

~σ·~L

(

ψA
ψB

)

= ̄h

(

(±(j+^12 ∓1)ψA
(∓(j+^12 ±1)ψB

)

L^2

(

ψA
ψB

)

= j(j+ 1) ̄h^2

(

ψA
ψB

)

− ̄h^2

(

(±(j+^12 ∓1)ψA
(∓(j+^12 ±1)ψB

)


3

4

̄h^2

(

ψA
ψB

)

= ̄h^2

((

j(j+ 1)−

3

4

)(

ψA
ψB

)


(

(±(j+^12 ∓1)ψA
(∓(j+^12 ±1)ψB

))

= ̄h^2

(

(j(j+ 1)−^34 ∓(j+^12 ∓1))ψA
(j(j+ 1)−^34 ±(j+^12 ±1))ψB

)

= ̄h^2

(

(j^2 +j∓j∓^12 + 1−^34 )ψA
(j^2 +j±j±^12 + 1−^34 )ψB

)

= ̄h^2

(

(j^2 +j∓j∓^12 +^14 )ψA
(j^2 +j±j±^12 +^14 )ψB

)
Free download pdf