Note that the eigenvalues for the upper and lower components have the same possible values, but are
opposite for energy eigenstates. We already know the relationℓ=j±^12 from NR QM. We simply
check that it is the same here.
ℓ(ℓ+ 1) = (j±
1
2
)(j+ 1±
1
2
) =j^2 +j±
1
2
j±
1
2
j±
1
2
+
1
4
=j^2 +j±j±
1
2
+
1
4
It is correct. SoψAandψBareeigenstates ofL^2 but with different eigenvalues.
L^2
(
ψA
ψB
)
= ̄h^2
(
ℓ∓(ℓ∓+ 1)ψA
ℓ±(ℓ±+ 1)ψB
)
ℓ±=j±
1
2
Now weapply the Dirac equationand try to use our operators to help solve the problem.
(
γμ
∂
∂xμ
+γμ
ie
̄hc
Aμ+
mc
̄h
)
ψ= 0
(
γi
∂
∂xi
+γ 4
∂
∂x 4
+γ 4
ie
̄hc
iA 0 +
mc
̄h
)
ψ= 0
(
cγi
∂
∂xi
−iγ 4
∂
∂t
−γ 4
e
̄h
e
r
+
mc^2
̄h
)
ψ= 0
(
̄hcγ 4 γi
∂
∂xi
−i ̄h
∂
∂t
+V(r) +mc^2 γ 4
)
ψ= 0
̄hcγ 4 γi
∂
∂xi
ψ=
(
i ̄h
∂
∂t
−V(r)−mc^2 γ 4
)
ψ= 0
̄hc
(
1 0
0 − 1
)(
0 −iσi
iσi 0
)
∂
∂xi
ψ=
(
i ̄h
∂
∂t
−V(r)−mc^2 γ 4
)
ψ= 0
c
(
0 −i ̄hσi
−i ̄hσi 0
)
∂
∂xi
ψ=
(
i ̄h
∂
∂t
−V(r)−mc^2 γ 4
)
ψ= 0
c
(
0 σipi
σipi 0
)(
ψA
ψB
)
=
(
i ̄h∂t∂ −V(r)−mc^20
0 i ̄h∂t∂ −V(r) +mc^2
)(
ψA
ψB
)
c
(
0 σipi
σipi 0
)(
ψA
ψB
)
=
(
E−V(r)−mc^20
0 E−V(r) +mc^2
)(
ψA
ψB
)
The Dirac Equation then is.
c~σ·~p
(
ψB
ψA
)
=
(
E−V(r)−mc^20
0 E−V(r) +mc^2
)(
ψA
ψB
)
We can use commutation and anticommutation relations towrite~σ·~pin terms of separate
angular and radial operators.
σixˆiσjxˆjσnpn = σiσjxˆixˆjσnpn=
1
2
(σiσj+σjσi)ˆxiˆxjσnpn=
1
2
2 δijxˆixˆjσnpn=σnpn
σnpn = σixˆiσjxˆjσnpn=
1
r
σixi
r
(σjσnxjpn) =
1
r
σixi
r
1
2
(σjσnxjpn+σnσjxnpj)