130_notes.dvi

(Frankie) #1

Note that the eigenvalues for the upper and lower components have the same possible values, but are
opposite for energy eigenstates. We already know the relationℓ=j±^12 from NR QM. We simply
check that it is the same here.


ℓ(ℓ+ 1) = (j±

1

2

)(j+ 1±

1

2

) =j^2 +j±

1

2


1

2


1

2

+

1

4

=j^2 +j±j±

1

2

+

1

4

It is correct. SoψAandψBareeigenstates ofL^2 but with different eigenvalues.


L^2

(

ψA
ψB

)

= ̄h^2

(

ℓ∓(ℓ∓+ 1)ψA
ℓ±(ℓ±+ 1)ψB

)

ℓ±=j±

1

2

Now weapply the Dirac equationand try to use our operators to help solve the problem.
(
γμ



∂xμ

+γμ

ie
̄hc

Aμ+

mc
̄h

)

ψ= 0
(
γi


∂xi

+γ 4


∂x 4

+γ 4

ie
̄hc

iA 0 +

mc
̄h

)

ψ= 0
(
cγi


∂xi

−iγ 4


∂t

−γ 4

e
̄h

e
r

+

mc^2
̄h

)

ψ= 0
(
̄hcγ 4 γi


∂xi

−i ̄h


∂t

+V(r) +mc^2 γ 4

)

ψ= 0

̄hcγ 4 γi


∂xi

ψ=

(

i ̄h


∂t

−V(r)−mc^2 γ 4

)

ψ= 0

̄hc

(

1 0

0 − 1

)(

0 −iσi
iσi 0

)


∂xi

ψ=

(

i ̄h


∂t

−V(r)−mc^2 γ 4

)

ψ= 0

c

(

0 −i ̄hσi
−i ̄hσi 0

)


∂xi

ψ=

(

i ̄h


∂t

−V(r)−mc^2 γ 4

)

ψ= 0

c

(

0 σipi
σipi 0

)(

ψA
ψB

)

=

(

i ̄h∂t∂ −V(r)−mc^20
0 i ̄h∂t∂ −V(r) +mc^2

)(

ψA
ψB

)

c

(

0 σipi
σipi 0

)(

ψA
ψB

)

=

(

E−V(r)−mc^20
0 E−V(r) +mc^2

)(

ψA
ψB

)

The Dirac Equation then is.


c~σ·~p

(

ψB
ψA

)

=

(

E−V(r)−mc^20
0 E−V(r) +mc^2

)(

ψA
ψB

)

We can use commutation and anticommutation relations towrite~σ·~pin terms of separate
angular and radial operators.


σixˆiσjxˆjσnpn = σiσjxˆixˆjσnpn=


1

2

(σiσj+σjσi)ˆxiˆxjσnpn=

1

2

2 δijxˆixˆjσnpn=σnpn

σnpn = σixˆiσjxˆjσnpn=

1

r

σixi
r

(σjσnxjpn) =

1

r

σixi
r

1

2

(σjσnxjpn+σnσjxnpj)
Free download pdf