130_notes.dvi

(Frankie) #1
=

1

r

σixi
r

1

2

(σjσnxjpn+ (σjσn+ 2iǫnjkσk)xnpj) =

1

r

σixi
r

(

1

2

(σjσnxjpn+σjσnxnpj) +iǫnjkσkxnpj)

=

1

r

σixi
r

(

1

2

(σjσnxjpn+σnσjxjpn) +iσkǫnjkxnpj) =

1

r

σixi
r

(

1

2

(σjσn+σnσj)xjpn+iσkLk)

=

1

r

σixi
r

(

1

2

2 δjnxjpn+iσkLk) =

1

r

σixi
r

(xjpj+iσkLk)

~σ·~p =

1

r

~σ·~x
r

(

−i ̄hr


∂r

+i~σ·L~

)

~σ·~p=

1

r

~σ·~x
r

(

−i ̄hr


∂r
+i~σ·~L

)

Note that the operators~σr·~xandi~σ·L~act only on the angular momentum parts of the state. There
are no radial derivatives so they commute with−i ̄hr∂r∂. Lets pick a shorthand notation for the
angular momentum eigenstates we must use. These have quantum numbersj,mj, andℓ.ψAwill
haveℓ=ℓAandψB must have the other possible value ofℓwhich we labelℓB. Following the
notation of Sakurai, we will call the state|jmjℓA〉 ≡ Y
mj
jℓA=αYℓA,mj−^12 χ++βYℓA,mj+^12 χ−. (Note
that our previous functions made use ofm=mℓparticularly in the calculation ofαandβ.)


c

1

r

~σ·~x
r

(

−i ̄hr


∂r

+i~σ·L~

)(

ψB
ψA

)

=

(

E−V(r)−mc^20
0 E−V(r) +mc^2

)(

ψA
ψB

)

c


1

r

~σ·~x
r

(

−i ̄hr


∂r

+i~σ·~L

)(

if(r)YjℓmBj
g(r)YjℓmAj

)

=

(

E−V(r)−mc^20
0 E−V(r) +mc^2

)(

g(r)YjℓmAj
if(r)YjℓmBj

)

Theeffect of the two operators related to angular momentumcan be deduced. First,~σ·L~
is related toK. For positiveκ,ψAhasℓ=j+^12. For negativeκ,ψAhasℓ=j−^12. For either,ψB
has the opposite relation forℓ, indicating why the full spinor is not an eigenstate ofL^2.


K =

(

~σ·~L+ ̄h 0
0 −~σ·L~+− ̄h

)

Kψ = −κ ̄hψ=

(

~σ·~L+ ̄h 0
0 −~σ·~L− ̄h

)(

ψA
ψB

)

=∓

(

j+

1

2

)

̄h

(

ψA
ψB

)

(~σ·L~+ ̄h)ψA = −κ ̄hψA
~σ·~LψA = (−κ−1) ̄hψA
(−~σ·~L− ̄h)ψB = −κ ̄hψB
~σ·~LψB = (κ−1) ̄hψB

Second, ~σr·~xis a pseudoscalar operator. It therefore changes parity and theparity of the state is
given by (−1)ℓ; so it must changeℓ.


~σ·~x
r

YjℓmAj=CYjℓmBj

The square of the operator


(~σ·~x
r

) 2

is one, as is clear from the derivation above, so we know the effect
of this operator up to a phase factor.


~σ·~x
r

YjℓmAj=eiδYjℓmBj
Free download pdf