130_notes.dvi

(Frankie) #1

Take thecomplex conjugatecarefully remembering thatx 4 andA 4 will change signs.
(

∂xi


+

ie
̄hc

Ai

)

γi∗S∗Cψ+

(



∂x 4


ie
̄hc

A 4

)

γ 4 ∗S∗Cψ+
mc
̄h

SC∗ψ= 0

Multiply from the leftbySC∗−^1.
(

∂xi


+

ie
̄hc

Ai

)

SC∗−^1 γ∗iSC∗ψ+

(



∂x 4


ie
̄hc

A 4

)

SC∗−^1 γ 4 ∗S∗Cψ+
mc
̄h

ψ= 0

Compare this to theoriginal Dirac equation,
(

∂xμ


+

ie
̄hc


)

γμψ+
mc
̄h

ψ= 0
(

∂xi

+

ie
̄hc

Ai

)

γiψ+

(


∂x 4

+

ie
̄hc

A 4

)

γ 4 ψ+
mc
̄h

ψ= 0

The two equations will be thesame if the matrixSCsatisfiesthe conditions.


S∗−C^1 γi∗S∗C=γi
SC∗−^1 γ∗ 4 SC∗=−γ 4.

Recalling theγmatrices in our representation,


γ 1 =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0



 γ 2 =




0 0 0 − 1

0 0 1 0

0 1 0 0

−1 0 0 0



 γ 3 =




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0



 γ 4 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 − 1




note thatγ 1 andγ 3 are completely imaginary and will change sign upon complex conjugation, while
γ 2 andγ 4 are completely real and will not. The solution in our representation (only) is


SC∗=SC∗−^1 =SC=SC−^1 =γ 2.

It anti-commutes withγ 1 andγ 3 producing a minus sign to cancel the one from complex conjugation.
It commutes withγ 2 giving the right + sign. It anti-commutes withγ 4 giving the right - sign.


Thecharge conjugate of the Dirac spinoris given by.


ψ′=γ 2 ψ∗

Of course a second charge conjugation operation takes the state back to the originalψ.


Applying this to the plane wave solutions gives.


ψ(1)~p =


mc^2
|E|V

u(1)~p ei(~p·~x−Et)/ ̄h → −


mc^2
|E|V

u(4)−~pei(−~p·~x+Et)/ ̄h≡


mc^2
|E|V

v(1)~p ei(−~p·~x+Et)/ ̄h

ψ(2)~p =


mc^2
|E|V

u(2)~p ei(~p·~x−Et)/ ̄h →


mc^2
|E|V

u(3)−~pei(−~p·~x+Et)/h ̄≡


mc^2
|E|V

v(2)~p ei(−~p·~x+Et)/h ̄
Free download pdf