2.6 Examples
2.6.1 The Solar Temperature*
Estimate the solar temperature using
- the solar radiation intensity on the earth of 1.4 kilowatts per squaremeter. (rsun= 7× 108
m,dsun= 1. 5 × 1011 m) - and the solar spectrum which peaks at about 500 nm.
First we compute the power radiated per unit area on the solar surface.
R= (1400W/m^2 )(4πd^2 sun)/(4πrsun^2 ) = 6. 4 × 107 W/m^2
We compare this to the expectation as a function of temperature.
R(T) = (5. 67 × 10 −^8 W/m^2 /◦K^4 ) T^4
and get
T^4 =
6. 4 × 107
5. 67 × 10 −^8
T = 5800◦K
Lets assume thatE(λ,T) peaks at 500 nm as one of the graphs shows. We need to transform
E(ν,T). Rememberf(ν)dν=g(λ)dλfor distribution functions.
E(ν,T) =
2 πν^2
c^2
hν
ehν/kT− 1
E(λ,T) =
∣
∣
∣
∣
dν
dλ
∣
∣
∣
∣
2 πν^2
c^2
hν
ehν/kT− 1
=
ν^2
c
2 πν^2
c^2
hν
ehν/kT− 1
=
2 πν^4
c^3
hν
ehν/kT− 1
This peaks when
ν^5
ehν/kT− 1
is maximum.
5 ν^4
ehν/kT− 1
−
ν^5 (h/kT)ehν/kT
(ehν/kT−1)^2
= 0
5
ehν/kT− 1
=
ν(h/kT)ehν/kT
(ehν/kT−1)^2
5(ehν/kT−1)
ehν/kT
=hν/kT
5(1−e−hν/kT) =hν/kT