130_notes.dvi

(Frankie) #1

2.6 Examples


2.6.1 The Solar Temperature*


Estimate the solar temperature using



  • the solar radiation intensity on the earth of 1.4 kilowatts per squaremeter. (rsun= 7× 108
    m,dsun= 1. 5 × 1011 m)

  • and the solar spectrum which peaks at about 500 nm.


First we compute the power radiated per unit area on the solar surface.


R= (1400W/m^2 )(4πd^2 sun)/(4πrsun^2 ) = 6. 4 × 107 W/m^2

We compare this to the expectation as a function of temperature.


R(T) = (5. 67 × 10 −^8 W/m^2 /◦K^4 ) T^4

and get


T^4 =

6. 4 × 107

5. 67 × 10 −^8

T = 5800◦K

Lets assume thatE(λ,T) peaks at 500 nm as one of the graphs shows. We need to transform
E(ν,T). Rememberf(ν)dν=g(λ)dλfor distribution functions.


E(ν,T) =
2 πν^2
c^2


ehν/kT− 1

E(λ,T) =











2 πν^2
c^2


ehν/kT− 1

=
ν^2
c

2 πν^2
c^2


ehν/kT− 1

=

2 πν^4
c^3


ehν/kT− 1

This peaks when
ν^5
ehν/kT− 1
is maximum.


5 ν^4
ehν/kT− 1


ν^5 (h/kT)ehν/kT
(ehν/kT−1)^2

= 0

5

ehν/kT− 1

=

ν(h/kT)ehν/kT
(ehν/kT−1)^2
5(ehν/kT−1)
ehν/kT

=hν/kT

5(1−e−hν/kT) =hν/kT
Free download pdf