Peptide Production 303
- Poncz, L. and Dearborn, D. G. (1983) The resistance to tryptic hydrolysis of
peptide bonds adjacent to N,N-dimethyllysyl residues. J. Biol. Chem. 258,
1844-1850. - Bentz, H., Chang, R-J., Thompson, A. Y., Glaser, C. B., and Rosen, D. M.
(1990) Amino acid sequence of bovine osteoinductive factor. J. Biol. Chem.
265, 5024-5029. - Tomasselli, A. G., Frank, R., and Schiltz, E. (1986) The complete primary
structure of GTP:AMP phosphotransferase from beef heart mitochondria. FEBS
Lett. 202, 303-307. - Perides, G., Kuhn, S., Scherbarth, A., and Traub, P. (1987) Probing of the
structural stability of vimentin and desmin-type intermediate filaments with
Ca2÷-activated proteinase, thrombin and lysine-specific endoproteinase Lys-
C. Eur. J. Cell Biol. 43, 450-458. - Steffens, G. J, Gunzler, W. A., t3tting, F., Frankus, E., and Floh6, L. (1982)
The complete amino acid sequence of low molecular weight urokinase from
human urine. Hoppe-Seyler's Z. Physiol. Chem. 363, 1043-1058. - Konigsberg, W., Goldstein, J., and Hill, R. J. (1963) The structure of human
haemoglobin VII. The digestion of the 13 chain of human haemoglobin with
pepsin. J. Biol. Chem. 238, 2028-2033. - Price, N. C., Duncan, D., and McAlister, J. W. (1985) Inactivation of rabbit
muscle phosphoglycerate mutase by limited proteolysis with thermolysin.
Biochem. J. 229, 167-171. - Eggerer, H. (1984) Hysteretic behaviour of citrate synthase. Site-directed lim-
ited proteolysis. Eur. J. Biochem. 143, 205-212.