DHARM
108 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE
and negation (~). Other connectors like implication (→), equivalence (⇔) that are also used to
form a compound statement they are all represented using basic connectors ( ∧, ∨, ~).
Theorem 6.1
(i) (A → B) ⇔ (~ A ∨ B) (ii) (A ⇔ B) ⇔ (A ∧ B) ∨ (~ A ∧ ~ B)
(iii) (A ⊕ B) ⇔ (A ∧ ~B) ∨ (~ A ∧ B) (iv) (A ↔ B) ⇔ (A → B) ∧ (B → A)
(v) (A ∧ B) ⇔ ~ ( ~A ∨ ~ B) (vi) (A ∨ B) ⇔ ~ ( ~ A ∧ ~ B)
The equivalence of illustrated formulas (i) — (vi) can be proved by the truth table.
(for the truth table see section 5.4.5)
For example, verify the equivalence between the LHS and RHS of the Implication
formula shown in (i). Construct the truth table and compare the truth values of both the
formulas shown in column 3 and 5. We observe that for all possible interpretations of
propositional variables A and B truth values of both the formulas are same.
AB(A → B) ~ A (~ A ∨ B)
FFTTT
FTTTT
TFFFF
TTTFT
12345 ← Column number
Fig. 5.7
Similarly verify other equivalence formulas.
(ii) (A ⇔ B) ⇔ (A ∧ B) ∨ (~ A ∧ ~ B)
(Equivalence formula)
A B (A ⇔ B) (A ∧ B) (~ A ∧ ~ B) (A ∧ B) ∨ (~ A ∧∧∧∧∧~ B)
FF T F T T
FT F F F F
TF F F F F
TT T T F T
Fig. 5.8
(iii)(A ⊕ B) ⇔ (A ∧ ~ B) ∨ (~ A ∧ B)
(Exclusive-OR formula)
A B (A ⊕ B) (A ∧ ~ B) (~ A ∧ B) (A ∧ ~ B) ∨∨∨∨∨ (~ A ∧ B)
FF F F F F
FT T F T T
TF T T F T
TT F F F F
Fig. 5.9