Mathematical Foundation of Computer Science

(Chris Devlin) #1
DHARM

PROPOSITIONAL LOGIC 123

Example 5.18.


  1. J ∨ (~ K ∨ J)

  2. K ∨ (~ J ∧ K) / ∴ (J ∧ K) ∨ (~ J ∧ ~ K)
    (Apply rules of inference and rules of replacement
    whenever necessary and obtain new premises
    until we reach to conclusion)

  3. (J ∨ ~ K) ∨ J 1, Assoc

  4. J ∨ (~ K ∨ J) 3, Assoc

  5. J ∨ (J ∨ ~ K) 4, Comm

  6. (J ∨ J) ∨ ~ K 5, Assoc

  7. J ∨ ~ K 6, Taut

  8. (K ∨ ~ J) ∧ (K ∨ K) 2, Dist

  9. (K ∨ ~ J) ∧ K 8, Taut

  10. (K ∨ ~ J) 9, Simp

  11. ~ J ∨ K 10, Assoc

  12. J → K 11, Imp

  13. ~ K ∨ J 7, Comm

  14. K → J 13, Imp

  15. (J → K) ∧ (K → J) 12, & 14, Conj

  16. (J ∧ K) ∨ (~ J ∧ ~ K) 15, Equiv
    Thus given premises derived the valid conclusion. Hence argument is valid.
    III. Rule of Conditional Proof (CP)
    We shall now introduce another rule of inference known as conditional proof, which is only
    applicable if the conclusion is an implicative statement.
    Assume the argument,

  17. X 1

  18. X 2
    ................
    ................
    ................
    k. Xk
    ∴ A → B
    So, we obtain the formula ( ......(X 1 ∧ X 2 ) ∧ .......∧ Xk) → (A → B)
    Assume ( ......(X 1 ∧ X 2 ) ∧ .......∧ Xk):P
    Thus, we have P → (A → B)
    ⇔ (P ∧ A) → B by rule Exp ...(A)
    We observe that, if antecedent part of conclusion goes to the set of premises then we will
    have the consequent part as conclusion.

Free download pdf