dharm
- 1 Discrete Theory, Relations and Functions Acknowledgements .............................................................................................................ix
- 1.1 Introduction.........................................................................................................................
- 1.2 Elementary Theory of Sets
- 1.3 Set Rules & Sets Combinations..........................................................................................
- 1.3.1 Rule of Equality......................................................................................................
- 1.3.2 Study of Sets Combinations...................................................................................
- 1.3.3 Power Set................................................................................................................
- 1.3.4 Multisets.................................................................................................................
- 1.3.5 Ordered Sets...........................................................................................................
- 1.3.6 Cartesian Products.................................................................................................
- 1.4 Relations
- 1.4.1 Binary Relation......................................................................................................
- 1.4.2 Equivalence Relation...........................................................................................
- 1.4.3 Pictorial Representation of Relations.................................................................
- 1.4.4 Composite Relation..............................................................................................
- 1.4.5 Ordering Relation.................................................................................................
- 1.5 Functions
- 1.5.1 Classification of Functions...................................................................................
- 1.5.2 Composition of Functions....................................................................................
- 1.5.3 Inverse Functions.................................................................................................
- 1.5.4 Recursively Defined Functions............................................................................
- 11.6 Mathematical Induction & Piano’s Axioms.....................................................................
- 2 Discrete Numeric Functions and Generating Functions
- 2.1 Introduction.......................................................................................................................
- 2.2 Properties of Numeric Functions.....................................................................................
- 2.2.1 Addition of Numeric Functions...........................................................................
- 2.2.2 Multiplication of Numeric Functions..................................................................
- 2.2.3 Multiplication with Scalar Factor to Numeric Function...................................
- 2.2.4 Quotient of Numeric Functions...........................................................................
- 2.2.5 Modulus of Numeric Function.............................................................................
- 2.2.6 SI an and S–I an....................................................................................................... d:\N-com\TITLE.pm5 xi
- 2.2.7 Accumulated Sum of Numeric Functions...........................................................
- 2.2.8 Forward Difference & Backward Difference......................................................
- 2.2.9 Convolution of Numeric Functions.....................................................................
- 2.3 Asymptotic Behavior (Performance) of Numeric Functions...........................................
- 2.3.1 Big—Oh (O) Notation...........................................................................................
- 2.3.2 Omega (Ω) Notation.............................................................................................
- 2.3.3 Theta (θ) Notation................................................................................................
- 2.4 Generating Functions.......................................................................................................
- 2.5 Application of Generating Function to Solve Combinatorial Problems.........................
- 3 Recurrence Relations with Constant Coefficients
- 3.1 Introduction.......................................................................................................................
- (Linear Recurrence Relation with Constant Coefficients LRRCC)................................ 3.2 Recurrence Relation for Discrete Numeric Functions
- 3.3 Finding the Solution of LRRCC........................................................................................
- 3.3.1 Method of Finding Homogenous Solution..........................................................
- 3.3.2 Method of Finding Particular Solution...............................................................
- 3.4 Alternate Method Finding Solution of LRRCC by Generating Function......................
- 3.5 Common Recurrences from Algorithms...........................................................................
- 3.6 Method for Solving Recurrences.......................................................................................
- 3.6.1 Iteration Method..................................................................................................
- 3.6.2 Master Theorem...................................................................................................
- 3.6.3 Substitution Method............................................................................................
- 3.7 Matrix Multiplication........................................................................................................
- 3.1 Introduction.......................................................................................................................
- 4 Algebraic Structure
- 4.1 Introduction.......................................................................................................................
- 4.2 Groups
- 4.3 Semi Subgroup...................................................................................................................
- 4.4 Complexes..........................................................................................................................
- 4.5 Product Semi Groups........................................................................................................
- 4.6 Permutation Groups..........................................................................................................
- 4.7 Order of a Group................................................................................................................
- 4.8 Subgroups..........................................................................................................................
- 4.9 Cyclic Groups.....................................................................................................................
- 4.10 Cosets.................................................................................................................................
- 4.11 Group Mapping..................................................................................................................
- 4.12 Rings...................................................................................................................................
- 4.13 Fields..................................................................................................................................
- 5 Propositional Logic
- 5.1 Introduction to Logic.......................................................................................................
- 5.2 Symbolization of Statements..........................................................................................
- 5.3 Equivalence of Formula.................................................................................................. d:\N-com\TITLE.pm5 xii
- 5.4 Propositional Logic..........................................................................................................
- 5.4.1 Well Formed Formula........................................................................................
- 5.4.2 Immediate Subformula......................................................................................
- 5.4.3 Subformula
- 5.4.4 Formation Tree of a Formula............................................................................
- 5.4.5 Truth Table.........................................................................................................
- 5.5 Tautology.........................................................................................................................
- 5.6 Theory of Inference.........................................................................................................
- 5.6.1 Validity by Truth Table......................................................................................
- 5.6.2 Natural Deduction Method................................................................................
- 5.6.3 Analytical Tableaux Method (ATM)..................................................................
- 5.7 Predicate Logic................................................................................................................
- 5.7.1 Symbolization of Statements using Predicate..................................................
- 5.7.2 Variables and Quantifiers..................................................................................
- 5.7.3 Free and Bound Variables.................................................................................
- 5.8 Inference Theory of Predicate Logic...............................................................................
- 6 Lattice Theory
- 6.1 Introduction.....................................................................................................................
- 6.2 Partial Ordered Set
- 6.3 Representation of a Poset (Hasse Diagram)..................................................................
- 6.4 Lattices
- 6.4.1 Properties of Lattices.........................................................................................
- 6.4.2 Lattices and Algebraic Systems........................................................................
- 6.4.3 Classes of Lattices..............................................................................................
- 6.4.4 Product of Lattices.............................................................................................
- 6.4.5 Lattice Homomorphism.....................................................................................
- 7 Introduction to Languages and Finite Automata
- 7.1 Basic Concepts of Automata Theory..............................................................................
- 7.1.1 Alphabets............................................................................................................
- 7.1.2 Strings.................................................................................................................
- 7.1.3 Power of Σ
- 7.1.4 Languages
- 7.2 Deterministic Finite State Automata (DFA).................................................................
- 7.2.1 Definition
- 7.2.2 Representation of a DFA
- 7.2.3 δ-head
- 7.2.4 Language of a DFA
- 7.3 Nondeterministic Finite State Automata (NFA)...........................................................
- 7.3.1 Definition
- 7.3.2 Representation
- 7.3.3 δ-head
- 7.3.4 Properties of δ-head............................................................................................ d:\N-com\TITLE.pm5 xiii
- 7.3.5 Language of an NFA
- 7.1 Basic Concepts of Automata Theory..............................................................................
- 8 Equivalence of NFA and DFA
- 8.1 Relationship between NFA & DFA................................................................................
- 8.2 Method of Conversion from NFA to DFA......................................................................
- 8.3 Finite Automata with ∈-moves.......................................................................................
- 8.3.1 NFA with ∈-moves.............................................................................................
- 8.3.2 δ∈-head
- 8.3.3 Language of NFA with ∈-moves........................................................................
- 8.3.4 Method of Conversion from NFA with ∈-moves to NFA.................................
- 8.3.5 Equivalence of NFA with ∈-moves to DFA.......................................................
- 9 Regular Expressions
- 9.1 Introduction to Regular Expressions.............................................................................
- 9.2 Definition of Regular Expression...................................................................................
- 9.3 Equivalence of Regular Expression and Finite Automata...........................................
- 9.3.1 Construction of NFA with ∈-moves from Regular Expression........................
- 9.3.2 Construction of DFA from Regular Expression................................................
- 9.4 Finite Automata to Regular Expression........................................................................
- 9.4.1 Construction of DFA from Regular Expression................................................
- 9.5 Construction of Regular Expression from DFA.............................................................
- 9.6 Finite Automatons with Output.....................................................................................
- 9.6.1 Melay Automaton...............................................................................................
- 9.6.2 Moore Automaton...............................................................................................
- 9.7 Equivalence of Melay & Moore Automatons.................................................................
- (From Moore Machine-to-Melay Machine)....................................................... 9.7.1 Equivalent Machine Construction
- 9.7.2 Melay Machine-to-Moore Machine....................................................................
- 10 Regular and Nonregular Languages
- 10.1 Introduction.....................................................................................................................
- 10.2 Pumping Lemma for Regular Languages......................................................................
- 10.3 Regular and Nonregular Languages Examples............................................................
- 10.4 Properties of Regular Languages...................................................................................
- 10.5 Decision Problems of Regular Languages......................................................................
- 10.5.1 Emptiness Problem............................................................................................
- 10.5.2 Finiteness Problem.............................................................................................
- 10.5.3 Membership Problem.........................................................................................
- 10.5.4 Equivalence Problem..........................................................................................
- 10.5.5 Minimization Problem and Myhill Nerode Theorem (Optimizing DFA)........
- 11 Non-Ragular Grammars d:\N-com\TITLE.pm5 xiv
- 11.1 Introduction.....................................................................................................................
- 11.2 Definition of the Grammar.............................................................................................
- 11.3 Classification of Grammars—Chomesky’s Heirarchy...................................................
- 11.4 Sentential Form...............................................................................................................
- 11.5 Context Free Grammars (CFG) & Context Free Languages (CFL)
- 11.6 Derivation Tree (Parse Tree)..........................................................................................
- 11.6.1 Parse Tree Construction....................................................................................
- 11.7 Ambiguous Grammar......................................................................................................
- 11.7.1 Definition
- 11.7.2 Ambiguous Context Free Language..................................................................
- 11.8 Pushdown Automaton.....................................................................................................
- 11.9 Simplification of Grammars...........................................................................................
- 11.10 Chomsky Normal Form...................................................................................................
- 11.11 Greibach Normal Form...................................................................................................
- 11.12 Pumping Lemma for CFLs..............................................................................................
- 11.13 Properties of Context Free Languages...........................................................................
- 11.14 Decision Problems of Context Free Languages.............................................................
- 11.15 Undecided Problems of Context Free Languages.........................................................
- 12 Introduction to Turning Machine
- 12.1 Introduction.....................................................................................................................
- 12.2 Basic Features of a Turing Machine..............................................................................
- 12.2.1 Abstract View of a Turing Machine..................................................................
- 12.2.2 Definition of a Turing Machine.........................................................................
- 12.2.3 Instantaneous Description of a Turing Machine..............................................
- 12.2.4 Representation of a Turing Machine................................................................
- 12.3 Language of a Turing Machine.......................................................................................
- 12.4 General Problems of a Turing Machine.........................................................................
- 12.5 Turing Machine is the Computer of Natural Functions...............................................
- A.1 Introduction..................................................................................................................... Appendix—Boolean Algebra
- A.2 Definition of Boolean Algebra.........................................................................................
- A.3 Theorems of Boolean Algebra.........................................................................................
- A.4 Boolean Functions...........................................................................................................
- A.5 Simplification of Boolean Functions..............................................................................
- A.6 Forms of Boolean Functions...........................................................................................
- A.7 Simplification of Boolean Functions Using K-map.......................................................
- 12 Introduction to Turning Machine