DHARM
146 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE
We can prove above equivalence formulas. For example, to prove the (iii) equivalence
formula,we will prove that both of the following formulas be valid,
I. (∀x) P(x) → ~ (∃x) ~ P(x) and,
II. ~ (∃x) ~ P(x) → (∀x) P(x)
/∴ (∀x) P(x) ⇔ ~ (∃x) ~ P(x)
Proof.
1.( ) ~ P( )∃xx Premise (Assumed)
2.~ P( )y ,, (Assumed)
3.(∀xx) P( ) ,, (Assumed)
4.F( )y 3, UI
5.()P() P()∀→xx y 3-4,CP
6.~( )P( )∀xx 2&5,MT
7.~( )P( )∀xx 1,2-6,EI
8.( )~P( )∃→∀xx~( )P( )xx 1-7,CP
9.~(~ (∀→∃xx) P( )) ~ (( ) ~ P( ))x x 8, Trans
10.(∀→∃xx) P( ) ~ ( ) ~P( )x x 9, Dem
Hence equivalence formula is valid.
Alternatively, above equivalence can also be proved as follows,
/∴ ~ (∃x) ~ P(x) → (∀x) P(x)
Proof,
1.~ ( ) ~ P( )∃xx Premise (assumed)
2.~ P( )y ,, ,,
3.( )~P( )∃xx 2, EG
4.~P( )yxx→∃( )~P( ) 2-3,CP
5.~ ~ P( )y 1&4,MT
6.P( )y 5, Dem
7.(∀xx) P( ) 6, UG
8.~( )~P( )∃→∀xx xx( )P( ) 1-7,CP
Hence, equivalence formula is valid.
EXERCISES
5.1 Let A be “It is cloudy” and let B be “It is raining”. Give a simple verbal sentence which describes
each of the following statements :
(i)~ A (v) (A ∧ ~ B) → B
(ii)A → ~ B (vi)B ↔ A
(iii)~ ~ B (vii)A ↔ ~ B
(iv)~ A ∧ ~ B (viii) (A → B) ↔ A.