Mathematical Foundation of Computer Science

(Chris Devlin) #1
DHARM

184 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

= k∪=

i
1 δ(,)pk a
= { r 1 , r 2 , r 3 , ............, rj}‡
Abstract view of the automata during scanning the string x = y a is shown below in
Fig. 7.20.

Þ

NFA q

............y............

N

NFA pp 12 / /....../pi

............y............

N

a

state

a


NFA rr 12 / /....../rj

............y............

N

a

state

Fig. 7.20
Example7.11. Fig. 7.21 shows a NFA N (similar to the automaton discussed in previous exam-
ple), then check its nature of acceptance over the string 101101.

q 0 q 2 q 3
1
q 1
0 1

0, 1 0, 1

N
Fig. 7.21
Sol. Above NFA N can be defined as,
N = ( {q 0 , q 1 , q 2 , q 3 }, {0, 1}, δ, q 0 , {q 3 });
where δ’s are shown in the following transition table (TT),


State

Input symbol
0
{q 0 ,q

q

1

3

}

}

F
F
{

q
q
q
q

0
1
2
3

1
{
{
{
{

q
q
q
q

0
2
3
3

}
}
}
}

‡ Case I, j = i, when all the state have single transition on each symbol of the set Σ then, † it
returns to exactly similar number of state that is equal to I or { r 1 , r 2 , r 3 , ............, ri}.
Case II, j = 0, when there is no transition arc over symbol a from state pk (∀k = 1 to i).
Case III, j < i or j > i, depending upon the nature of transition from state pk on input symbol a.
Above cases exists only because of dynamic nature of NFA.
Free download pdf