DHARM20 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE
ikik
ik
*()*2122^1
1=− + +
=∑
true for all k ≥ 1 such that k < n.
Induction hypothesis with k = n – 1
inin
in
*()*2222
11
=− +
=−
∑Since, iiniin
i
nin
***222
111=+
=−=∑∑
Thus, in n
i
n
*{()* }*inn
=∑ =− ++
122222= (n – 2 + n) 2n + 2 = (n – 1) 2n + 1 + 2. Proved.
Example 1.13. Show that for any n ≥ 0,
11 1
1/(ii )n n/( )
in
+= +
=∑
Sol. Let P(n): 11 1
1
/(ii )n n/( )
in
+= +
=∑
For n = 0, P(0) is true. For n greater than 0, assume that
11 1
1/(ii )k k/( )
ik
+= +
=∑
holds for all k ≥ 0 such that k < n.
For k = n – 1,
11 1
11
/(ii ) (n )/n
in
+= −
=−
∑Since, 11 1 11 1
1
11/(ii ) / (i i ) / (n n )
inin
+= ++ +
=−=∑∑
11 11 1
1/( ) (ii n )/n / (nn )
in
+= − + +
=∑
= (n^2 – 1 + 1) / n (n + 1) = n / (n + 1). Proved.EXERCISES
1.1 For the set X = {1, 2, 3, ∅}construct the following :
(i)X ∪ P(X) (ii)X ∩ P(X)
(iii)X – ∅ (iv)X – {∅}
(v) Is ∅ ∈ P(X)?
(where P(X) is the power set of X)