DHARM
20 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE
ik
ik
i
k
*()*2122^1
1
=− + +
=
∑
true for all k ≥ 1 such that k < n.
Induction hypothesis with k = n – 1
in
in
i
n
*()*2222
1
1
=− +
=
−
∑
Since, iiniin
i
n
i
n
***222
1
1
1
=+
=
−
=
∑∑
Thus, in n
i
n
*{()* }*inn
=
∑ =− ++
1
22222
= (n – 2 + n) 2n + 2 = (n – 1) 2n + 1 + 2. Proved.
Example 1.13. Show that for any n ≥ 0,
11 1
1
/(ii )n n/( )
i
n
+= +
=
∑
Sol. Let P(n): 11 1
1
/(ii )n n/( )
i
n
+= +
=
∑
For n = 0, P(0) is true. For n greater than 0, assume that
11 1
1
/(ii )k k/( )
i
k
+= +
=
∑
holds for all k ≥ 0 such that k < n.
For k = n – 1,
11 1
1
1
/(ii ) (n )/n
i
n
+= −
=
−
∑
Since, 11 1 11 1
1
1
1
/(ii ) / (i i ) / (n n )
i
n
i
n
+= ++ +
=
−
=
∑∑
11 11 1
1
/( ) (ii n )/n / (nn )
i
n
+= − + +
=
∑
= (n^2 – 1 + 1) / n (n + 1) = n / (n + 1). Proved.
EXERCISES
1.1 For the set X = {1, 2, 3, ∅}construct the following :
(i)X ∪ P(X) (ii)X ∩ P(X)
(iii)X – ∅ (iv)X – {∅}
(v) Is ∅ ∈ P(X)?
(where P(X) is the power set of X)