Mathematical Foundation of Computer Science

(Chris Devlin) #1
DHARM
N-COM\APPENDIX.PM5

376 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE


A.5 Using K-map representation find the minimal CNF expression for each of the following func-
tions:
(i)f(x, y, z, w) = Π (0, 1, 2, 3, 4, 10, 11) (ii)f(x, y, z) = Π (0, 1, 4, 5)
(iii)f(w, x, y, z) = Π (0, 1, 2, 3, 4, 6, 12) (iv)f(w, x, y, z) = Π (0, 2, 6, 7, 8, 9, 13, 15).
A.6 Consider X = 01001001, Y = 01111000, and Z = 10000111 then find
(i)X + Y′ + Z (ii)(X′ + Z) Y (iii) X Y Z.
A.7 Let f(A, B, C) = AB′ + ABC′ + A′BC′, then show that
(i)f(A, B, C) + AC′ = f(A, B, C) (ii)f(A, B, C) + A ≠ f(A, B, C)
(iii)f(A, B, C) + C′ ≠ f(A, B, C).
A.8 Write the dual of each Boolean equation,
(i)x + xy = x + y (ii)(x. 1) (0 + x′) = 0.
A.9 Show that the dual of f(x, y) = xy + x′y′ is equal to its complement.
A.10 In the truth table shown in Fig. A.26 that defines the functions f 1 and f 2 , obtain the simplified
functions in SoP and PoS.
xyzf 1 f 2
00011
00110
01011
01101
10001
10111
11000
11110
Fig. A.26
Free download pdf