DHARM28 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE
Example 2.3. Add the numeric functions
an =0for0n5
32forn6n≤≤
+≥R
S
T − and bn =13 for0n2
n5 forn3−≤≤n
+≥R
S
T
Sol. Let an + bn = cn, then cn will be given as,
cn =013 13 0 2
055 35
32 53 7 6+− =− ≤ ≤
++=+ ≤≤
++ += + + ≥R
S
|T|
−−nnnnn
nn n
nnnfor
for
forExample 2.4. Add the numeric functions
an =^0 for 0 n 2
25forn3n≤≤
+≥R
S
T
− and bn^ = 32 for0n1n2 forn2
−≤≤n
+≥R
S
T
Sol. Let an + bn = cn, then cn will be given as,
cn =032 32 0 1
0224 2
25 22 7 3+− =− ≤≤
++= =
++ += + + ≥R
S|
T|
−−nnnnn
n
nnnfor
for
for()Addition property of numeric function can also be applied between two/ more numeric
functions. Lets we have numeric functions a 1 , a 2 , .......an then their addition a 1 + a 2 +...... + an
will also a numeric function whose value at n is equal to the sum of values of all the numeric
functions at n. For example,
an =10
21
02for
for
forn
n
n=
=
≥R
S
|
T|bn =002
23for
for≤≤
≥R
S
Tn
n n and cn =10
01for
forn
n=
≥RS
Tthen an + bn + cn =
1012 0
2002 1
0000 2
02 02 3++= =
++= =
++= =
++= ≥R
S||
T
|
|for
for
for
forn
n
n
nnn2.2.2 Similar to additions of numeric functions, multiplication of numeric functions also
returns a numeric function. Let an and bn are two numeric functions then its multiplica-
tion (an ∗ bn) will be a numeric function and its value at n will be the multiplication of
values of numeric functions at n.(Multiplication property of numeric functions).
For example, the numeric functions
an =002
23for
for≤≤
≥R
S
Tn
n n and bn = 2
n for n ≥ 0then an * bn =
02 0 0 2
22 2^13*
*n
nn nn
n=≤≤
=≥R
S
T
+for
forExample 2.5. The multiplication of numeric functions given in example 3.4, will be
an * bn =0 * (3 2 ) 0 for 0 n 1
0*(n 2) 0 for n 2
(2 5) * (n 2) for n 3nn−= ≤≤
+= =
++ ≥R
S|
T|
−