DHARMDISCRETE NUMERIC FUNCTIONS AND GENERATING FUNCTIONS 35Sol. Using the convolution formula,cn = an*bn = abknk
kn
−
=∑
0= a 0 bn + a 1 bn–1 + ........ + an–1 b 1 + an b 0Since we have,
a 0 = a 1 = a 2 = 1 and a 3 = a 4 = ...... = 0
and b 0 = b 1 = b 2 = 1 and b 3 = b 4 = ...... = 0
Hence, c 0 = a 0 b 0 = 1.1 = 1
c 1 = a 0 b 1 + a 1 b 0 = 1.1 + 1.1 = 2
c 2 = a 0 b 2 + a 1 b 1 + a 2 b 0 = 1.1 + 1.1 + 1.1 = 3
c 3 = a 0 b 3 + a 1 b 2 + a 2 b 1 + a 3 b 0 = 0.0 + 1.1 + 1.1 + 0.1 = 2
c 4 = a 0 b 4 + a 1 b 3 + a 2 b 2 + a 3 b 1 + a 4 b 0 = 1.0 + 1.0 + 1.1 + 0.1 + 0.1 = 1
c 5 = a 0 b 5 + a 1 b 4 + a 2 b 3 + a 3 b 2 + a 4 b 1 + a 5 b 0
= 1.0 + 1.0 + 1.0 + 0.1 + 0.1 + 0.1 = 0
Similarly we find that rests of the values of c for n > 5 are all zero.
Therefore, convolution is given as,
cn
n
n
n
nn==
=
=
=
=R
S
|
||T
|
|
|10
21
32
23
14
0for
for
for
for
for
otherwise
Example 2.17 Let an = 1 for n ≥ 0 andb1forn1
2forn3
3forn5
6forn7
0 otherwisen==
=
=
=R
S
|
|T
|
|
Determine an*bn.Sol. Let, cn = an*bn =abknk
kn
−
=∑
0
For n = 0, c 0 = a 0 .b 0 = 1.1 = 1For n = 1, c 1 = abkk 1
01
∑ − = a 0 b 1 + a 1 b 0 = 1.1 + 1.0 = 1For n = 2, c 2 = abkk 2
02
∑ − = a 0 b 2 + a 1 b 1 + a 2 b 0 = 1.0 + 1.1 + 1.0 = 1For n = 3, c 3 = abkk 3
03
∑ − = a 0 b 3 + a 1 b 2 + a 2 b 1 + a 3 b 0 = 1.2 + 0 + 1.1 + 0 = 3For n = 4, c 4 = abkk 4
04
∑ − = a 0 b 4 + a 1 b 3 + a 2 b 2 + a 3 b 1 + a 4 b 0 = 0 + 1.2 + 0 + 1.1 + 0 = 3