GAS TURBINE POWER PLANT 299
(2) Heat supplied per hg of air circulation.
(3) The thermal efficiency of the cycle. Mass of the fuel may be neglected.
Solution. Pl = 1 bar
P 2 = 5 bar
P 3 = 5 – 0.1 = 4.9 bar
P 4 = 1 bar
T 1 = 20 + 273 = 293 K
T 3 = 680 + 273 = 953 K
ηcompressor = 85%
ηturbine = 80%
ηcombustion = 85%
For air and gases: cP′ = 1.024 kJ/kgK
y = 1.4
Power developed by the plant,
P = 1065 kW
(1) The quantity of air circulation, ma =?
For isentropic compression 1 – 2,
2
1
T
T
=
(1)/
2
1
p
p
γ− γ
=
5 (1.4 1) / 1.4
1
−
= 1.584
T 2 = 293 × 1.584 = 464 K
Now,
ηcompressor =^21
21
(T T )
(T′ T )
−
−
= 0.85
0.85 =
2
(464 293)
(T′ 293)
−
−
T 2 ′ = 494 K
For isentropic expansion process 3 – 4,
4
3
T
T =
(1)/
4
3
P
P
γ− γ
=
1 (1.4 1) /1.4
4.9
−
= 0.635
T 4 = 953 × 0.635 = 605 K
Now, ηturbine =
34
34
(T T )
(T T )
− ′
− = 0.80
0.85
0.80
=^4
(953 T )
(953 605)
− ′
−
3
5 b
ar
4.^9
ba
r
1 b
ar
2 2 ′
(^2931)
953
T(K)
4
4 ′
s
Fig. 9.31