Power Plant Engineering

(Ron) #1

304 POWER PLANT ENGINEERING


(4) The thermal efficiencies of the actual and ideal cycle
(5) The required airflow rate.
Solution. T 1 = 273 + 20 = 293 K
T 3 = 273 + 850 = 1123 K

T 2 a = T 1

(1)/
2
1

P
P

γ− γ




= 293.(4.28)0.2857 = 443.9 K

Similarly T 4 a = 0.2857

1123
(4.28)

= 741.25 K

Now ηcompressor =

21 1
21

(T T )
(T T )

a −

ηturbine =^34
34

(T T )
(T T )a



T 2 =^121
compressor

T(T T)+−a
η

=

293 (443.9 293)
0.8

+−
= 481.6 K

T 4 = T 3 – ηturbine (T 3 – T 4 a)
= 1123 – 0.8(1123 – 741.25) = 817.6 K
(2) and (3) specific work of compressor = Cp (T 2 – T 1 )
= 1.005(481.6 – 293) = 189.54 kJ/kg
Specific work of turbine = 1.005 (T 3 – T 4 )
= 1.005(1123 – 817.6) = 306.93 kJ/kg
Net work = 306.93 – 189.54 = 117.4 kJ/kg
(4) Thermal efficiency (ηt) of ideal cycle,

ηt = (1)
2
1

11
P
P

γ− γ






= 1 – 0.66 = 34%

Thermal efficiency of actual cycle,

ηt =

(Heat supplied-Heat rejected)
Heat supplied

=

32 41
32

{C (T T ) C (T T )}
{C ( T T )}

pp
p

−− −
− = 1 –

41
32

(T T )
(T T )



= 1 –

(817.6 293)
(1123 481.6)



= 1 – 0.818 = 18.20%

(5) Air flow rate =

3600
net work output in kJ/kg

kg/kW-hr.

I

φ

2a^2
1

4

3

4a

Fig. 9.35
Free download pdf