304 POWER PLANT ENGINEERING
(4) The thermal efficiencies of the actual and ideal cycle
(5) The required airflow rate.
Solution. T 1 = 273 + 20 = 293 K
T 3 = 273 + 850 = 1123 K
T 2 a = T 1
(1)/
2
1
P
P
γ− γ
= 293.(4.28)0.2857 = 443.9 K
Similarly T 4 a = 0.2857
1123
(4.28)
= 741.25 K
Now ηcompressor =
21 1
21
(T T )
(T T )
a −
−
ηturbine =^34
34
(T T )
(T T )a
−
−
T 2 =^121
compressor
T(T T)+−a
η
=
293 (443.9 293)
0.8
+−
= 481.6 K
T 4 = T 3 – ηturbine (T 3 – T 4 a)
= 1123 – 0.8(1123 – 741.25) = 817.6 K
(2) and (3) specific work of compressor = Cp (T 2 – T 1 )
= 1.005(481.6 – 293) = 189.54 kJ/kg
Specific work of turbine = 1.005 (T 3 – T 4 )
= 1.005(1123 – 817.6) = 306.93 kJ/kg
Net work = 306.93 – 189.54 = 117.4 kJ/kg
(4) Thermal efficiency (ηt) of ideal cycle,
ηt = (1)
2
1
11
P
P
γ− γ
−
= 1 – 0.66 = 34%
Thermal efficiency of actual cycle,
ηt =
(Heat supplied-Heat rejected)
Heat supplied
=
32 41
32
{C (T T ) C (T T )}
{C ( T T )}
pp
p
−− −
− = 1 –
41
32
(T T )
(T T )
−
−
= 1 –
(817.6 293)
(1123 481.6)
−
−
= 1 – 0.818 = 18.20%
(5) Air flow rate =
3600
net work output in kJ/kg
kg/kW-hr.
I
φ
2a^2
1
4
3
4a
Fig. 9.35