FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS I 3.29Part B Regarding product functions :
Differentiate the following with respect to x
- (i) x (x + 1) (ii)x^2 (x - 1) [Ans. (i) 2x + 1 (ii) 3x^2 - 2x]
- (i) (x + 1) (x + 2) (ii)(x^2 + 1) x^2 [Ans. (i) 2x + 3 (ii) 4x^3 + 2x]
- (i) (x - 1 )^2 (x + 2) (ii)(x^2 + 1) (x - 2)^3. [Ans. (i) 3x^2 - 3 (ii) (x - 2)^2 ( 5x^2 - 4x + 3)]
- (i) x. ex (ii)x^10 ex (iii)ex. logx (iv)2ex (logx + 4).
[Ans. (i) x.ex + ex (ii)xl0ex+ lOxV (iii) ex.^1 x + exlogx (iv) 2ex.^1 x + 2ex (logx + 4)]- (i) (x+ l)(x + 2)(x + 4) (ii)(x^2 + 1) (x+ 2^2 ) (x^2 -2) [Ans. (i) 3x^2 + 14x + 14 (ii) 5x^4 + 16x^3 - 3x^2 - 8x - 2]
Part C Regarding division of functions :
Differentiate the following with respect to x. - (i) 1 x+x 2 (ii)
x^2
1 x+ (iii)
x 1
x 2+
+ (iv)^2x 4
x 2+
+
[Ans. (i) ( )2
221 x
1 x−
+ (ii) ( )2
22x x
1 x+
+ (iii) ( )^21
x 2+ (iv)( )
( )
2
2 2x 8x 2
x 2− + −
+
- (i)
x 1^2
x 1
+
− (ii)^3x 1
x 1+
− (iii)( )
( )
2
32 5x
x 1−
− (iv)4
4x 1
x 1−
+
[Ans. (i)2
2x 2x 1
(x 1)− −
− (ii)(^32 )
3 22x 3x 1
(x 1)− + +
−
(iii) ( )4 3 2
3 225x 40x 12x 50x 20
x 1− + − − +
− (iv) ( )4
4 28x
x 1+ ]- (i)
x^2
logx (ii)^2
logx
x (iii)ex
x (iv)2
xx
e[Ans. (i) ( )^22x logx x
logx−
(ii) x 2x logx− x 4 (iii) ( )x
2e x 1
x−
(iv) ( )x
2xxe 2 x
e−
]
3.4.1 DERIVATIVE OF FUNCTION OF A FUNCTION
A variable y may be a function of a second variable z, which again may be a function of a third variable
x.
i.e., y = z^2 + 3, and z = 2x + 1
Here y is a function of z and z again a function of x. Ultimately y is seen to depend on x, so y is called the
function of another function.
Symbolically, if y = f (z), z = φ (x) then y = f {φ (x)}