QuantumPhysics.dvi

(Wang) #1

3.1.4 Finite-dimensional Hilbert spaces


All Hilbert spaces of finite dimensionNare isomorphic to one another. Let{|n〉}n=1,···,Nbe


an orthonormal basis in anN-dimensional Hilbert spaceH, satisfying〈m|n〉=δmn. Every


vector|φ〉inHmay be represented by a 1×N column matrix Φ whose matrix elements are


the complex numbersφn=〈n|φ〉,


|φ〉 ↔ Φ =







φ 1


φ 2


·


·


φN







〈φ| ↔ Φ†= (φ∗ 1 φ∗ 2 ··· φ∗N) (3.15)


The inner product of two vectors is given by matrix contraction,


(|ψ〉,|φ〉) =〈ψ|φ〉= Ψ†Φ =


∑N

n=1

ψn∗φn (3.16)


There is another combination that will be very useful,


|ψ〉〈φ| ↔ ΨΦ†=






ψ 1 φ∗ 1 ψ 1 φ∗ 2 ··· ψ 1 φ∗N


ψ 2 φ∗ 1 ψ 2 φ∗ 2 ··· ψ 2 φ∗N


···


ψNφ∗ 1 ψNφ∗ 2 ··· ψNφ∗N






(3.17)


Notice that a basis vector|m〉corresponds to a column matrix Φ whose entries areφn=δmn.


3.1.5 Infinite-dimensional Hilbert spaces


A infinite-dimensional Hilbert space Hin quantum physics will be separable and have a


countable orthonormal basis{|n〉}n∈N. All separable Hilbert spaces are isomorphic to one


another, but they may arise in different ways. An arbitrary vector|φ〉 ∈ Hmay be repre-


sented by the expansion,


|φ〉=



n

cn|n〉 ||φ||^2 =



n

|cn|^2 <∞ (3.18)


where the sum is understood to be overN. The simplest example of an infinite-dimensional


separable Hilbert space is given by,


L^2 ≡{c= (c 1 ,c 2 ,c 3 ,···); cn∈C} (c,d)≡



n∈N

c∗ndn (3.19)

Free download pdf