QuantumPhysics.dvi
wang
(Wang)
#1
Total angular momentum may be defined onHjust as we did when we added two spin 1/2
systems,
J=J 1 ⊗I 2 +I 1 ⊗S 2 (8.40)
The basis states ofHmay be organized according to eigenvaluesmofJ 3 =Jz,
m=j 1 +
1
2
|j 1 ,j 1 〉⊗| 2 ,+〉
m=j 1 −
1
2
|j 1 ,j 1 〉⊗| 2 ,−〉, |j 1 ,j 1 − 1 〉⊗| 2 ,+〉
m=j 1 −
3
2
|j 1 ,j 1 − 1 〉⊗| 2 ,−〉, |j 1 ,j 1 − 2 〉⊗| 2 ,+〉
··· ···
m=−j 1 +
1
2
|j 1 ,−j 1 + 1〉⊗| 2 ,−〉, |j 1 ,−j 1 〉⊗| 2 ,+〉
m=−j 1 −
1
2
|j 1 ,−j 1 〉⊗| 2 ,−〉 (8.41)
There is a unique highestJ 3 state withj=j 1 + 1/2, so the tensor product contains once
the representationj=j 1 + 1/2, and we identity
|j,+j〉 = |j 1 ,+j 1 〉⊗| 2 ,+〉
|j,−j〉 = |j 1 ,−j 1 〉⊗| 2 ,−〉 (8.42)
Acting withJ−=J 1 −+S 2 −, we obtain all the states of this representation exactly once. For
example, at the levelm=j 1 − 1 /2, we obtain,
J−|j,+j〉 = ̄h
√
2 j 1 |j,j− 1 〉
=
(
J 1 −⊗I 2 +I 1 ⊗S 2 −
)
|j 1 ,j 1 〉⊗| 2 ,+〉
= ̄h
√
2 j 1 |j 1 ,j 1 − 1 〉⊗| 2 ,+〉+ ̄h|j 1 ,j 1 〉⊗| 2 ,−〉 (8.43)
As a result, we obtain a formula for the state
|j,j− 1 〉=
1
√
2 j
(√
2 j 1 |j 1 ,j 1 − 1 〉⊗| 2 ,+〉+|j 1 ,j 1 〉⊗| 2 ,−〉
)
(8.44)
At each value ofm=−j,···,+j, there is exactly one state belonging to the representation
j. Atm=j−1, the linear combination orthogonal to|j,j− 1 〉is given by
1
√
2 j
(
|j 1 ,j 1 − 1 〉⊗| 2 ,+〉−
√
2 j 1 |j 1 ,j 1 〉⊗| 2 ,−〉
)
(8.45)