QuantumPhysics.dvi

(Wang) #1

Total angular momentum may be defined onHjust as we did when we added two spin 1/2


systems,


J=J 1 ⊗I 2 +I 1 ⊗S 2 (8.40)


The basis states ofHmay be organized according to eigenvaluesmofJ 3 =Jz,


m=j 1 +


1


2


|j 1 ,j 1 〉⊗| 2 ,+〉


m=j 1 −


1


2


|j 1 ,j 1 〉⊗| 2 ,−〉, |j 1 ,j 1 − 1 〉⊗| 2 ,+〉


m=j 1 −


3


2


|j 1 ,j 1 − 1 〉⊗| 2 ,−〉, |j 1 ,j 1 − 2 〉⊗| 2 ,+〉


··· ···


m=−j 1 +


1


2


|j 1 ,−j 1 + 1〉⊗| 2 ,−〉, |j 1 ,−j 1 〉⊗| 2 ,+〉


m=−j 1 −


1


2


|j 1 ,−j 1 〉⊗| 2 ,−〉 (8.41)


There is a unique highestJ 3 state withj=j 1 + 1/2, so the tensor product contains once


the representationj=j 1 + 1/2, and we identity


|j,+j〉 = |j 1 ,+j 1 〉⊗| 2 ,+〉


|j,−j〉 = |j 1 ,−j 1 〉⊗| 2 ,−〉 (8.42)


Acting withJ−=J 1 −+S 2 −, we obtain all the states of this representation exactly once. For


example, at the levelm=j 1 − 1 /2, we obtain,


J−|j,+j〉 = ̄h



2 j 1 |j,j− 1 〉


=


(

J 1 −⊗I 2 +I 1 ⊗S 2 −


)

|j 1 ,j 1 〉⊗| 2 ,+〉


= ̄h



2 j 1 |j 1 ,j 1 − 1 〉⊗| 2 ,+〉+ ̄h|j 1 ,j 1 〉⊗| 2 ,−〉 (8.43)


As a result, we obtain a formula for the state


|j,j− 1 〉=


1



2 j


(√

2 j 1 |j 1 ,j 1 − 1 〉⊗| 2 ,+〉+|j 1 ,j 1 〉⊗| 2 ,−〉


)

(8.44)


At each value ofm=−j,···,+j, there is exactly one state belonging to the representation


j. Atm=j−1, the linear combination orthogonal to|j,j− 1 〉is given by


1



2 j


(

|j 1 ,j 1 − 1 〉⊗| 2 ,+〉−



2 j 1 |j 1 ,j 1 〉⊗| 2 ,−〉


)

(8.45)

Free download pdf