QuantumPhysics.dvi
wang
(Wang)
#1
Each group of states forms an orthogonal basis for the same Hilbert space. It is convenient
to normalize the states as follows,
〈j 1 ,j 2 ;m′ 1 ,m′ 2 |j 1 ,j 2 ;m 1 ,m 2 〉 = δm′ 1 ,m 1 δm′ 2 ,m 2
〈j 1 ,j 2 ;j′,m′|j 1 ,j 2 ;j,m〉 = δj′,jδm′,m (8.60)
We have already show that
|j 1 ,j 2 ;j,+j〉=|j 1 ,j 2 ; +j 1 ,+j 2 〉 j=j 1 +j 2
|j 1 ,j 2 ;j,−j〉=|j 1 ,j 2 ;−j 1 ,−j 2 〉 (8.61)
More generally, the above orthonormality conditions imply that the passage from one basis
to the other is by a unitary matrix,
|j 1 ,j 2 ;j,m〉=
∑
m 1
∑
m 2
|j 1 ,j 2 ;m 1 ,m 2 〉〈|j 1 ,j 2 ;m 1 ,m 2 |j 1 ,j 2 ;j,m〉 (8.62)
By choosing the phases of the states in both bases, all coefficientsmay in fact be chosen to
be real.
By applying the angular momentum generatorsJa=Ja 1 +J 2 ato both sides, we obtain
recursion relations between the matrix elements. ApplyingJ 3 , we get
m|j 1 ,j 2 ;j,m〉=
∑
m 1
∑
m 2
(m 1 +m 2 )|j 1 ,j 2 ;m 1 ,m 2 〉〈|j 1 ,j 2 ;m 1 ,m 2 |j 1 ,j 2 ;j,m〉 (8.63)
Taking the inner product with〈j 1 ,j 2 ;m′ 1 ,m′ 2 |, we obtain,
(m−m 1 −m 2 )〈|j 1 ,j 2 ;m 1 ,m 2 |j 1 ,j 2 ;j,m〉= 0 (8.64)
ApplyingJ±=J 1 ±+J 2 ±, we get
Nj,m±|j 1 ,j 2 ;j,m± 1 〉 =
∑
m 1
∑
m 2
Nj± 1 ,m 1 |j 1 ,j 2 ;m 1 ± 1 ,m 2 〉〈|j 1 ,j 2 ;m 1 ,m 2 |j 1 ,j 2 ;j,m〉
+
∑
m 1
∑
m 2
Nj± 2 ,m 2 |j 1 ,j 2 ;m 1 ,m 2 ± 1 〉〈|j 1 ,j 2 ;m 1 ,m 2 |j 1 ,j 2 ;j,m〉
where
Nj,m± =
√
j(j+ 1)−m(m±1) =
√
(j∓m)(j±m+ 1) (8.65)
Taking the inner product with〈j 1 ,j 2 ;m′ 1 ,m′ 2 |, we obtain,
Nj,m± 〈j 1 ,j 2 ;m 1 ,m 2 |j 1 ,j 2 ;j,m± 1 〉 = Nj± 1 ,m 1 ∓ 1 〈j 1 ,j 2 ;m 1 ∓ 1 ,m 2 |j 1 ,j 2 ;j,m〉
+Nj± 2 ,m 2 ∓ 1 〈j 1 ,j 2 ;m 1 ,m 2 ∓ 1 |j 1 ,j 2 ;j,m〉 (8.66)