SECOND LAW OF THERMODYNAMICS AND ENTROPY 279dharm
/M-therm/th5-4.pm5Example 5.32. A rigid cylinder containing 0.004 m^3 of nitrogen at 1 bar and 300 K is
heated reversibly until temperature becomes 400 K. Determine :
(i)The heat supplied. (ii)The entropy change.
Assume nitrogen to be perfect gas (molecular mass = 28) and take γ = 1.4.
Solution. Given : V 1 = 0.004 m^3 ; p 1 = 1 bar ; T 1 = 300 K ; T 2 = 400 K ; M for N 2 = 28 ;
γ = 1.4.
(i)The heat supplied :
Gas constant R = R
M0 8 314
28(
(Universal gas constant).
Molecular mass)= = 0.297 kg/kg KMass, m = pV
RT11
11 10^5 0 004
0 297 1000 300
= ××
××().
(. )
= 0.00449 kgcv = R
γ−=
1 −0 297
14 1.
.= 0.742 kJ/kg K
∴ Heat supplied = m cv(T 2 – T 1 )
= 0.00449 × 0.742(400 – 300) = 0.333 kJ. (Ans.)
(ii)The entropy change :The entropy change, S 2 – S 1 = m cv loge T
T2
1F
HGI
KJ= 0.00449 × 0.742 × loge 400
300F
HGI
KJ = 9.584 × 10–4 kJ/kg K. (Ans.)Example 5.33. A piston-cylinder arrangement contains 0.05 m^3 of nitrogen at 1 bar and
280 K. The piston moves inwards and the gas is compressed isothermally and reversibly until the
pressure becomes 5 bar. Determine :
(i)Change in entropy. (ii)Work done.
Assume nitrogen to be a perfect gas.
Solution. Given : V 1 = 0.05 m^3 ; p 1 = 1 bar ; T 1 = 280 K ; p 2 = 5 bar.
(i)Change in entropy, (S 2 – S 1 ) :
Gas constant, R = R
M
0 8 314
28
=. = 0.297 kJ/kg KMass of the gas, m = pV
RT11
1110 005^5
0 297 1000 280= ××
××().
(. )= 0.06 kg∴ Change in entropy S 2 – S 1 = mR loge
p
p1
2F
HGI
KJ= 0.06 × 0.297 loge
1
5F
HGI
KJ = – 0.0287 kJ/K. (Ans.)
Heat interaction, Q = T(S 2 – S 1 )
= 280 × (– 0.0287) = – 8.036 kJ
∴ Work done, W = Q = – 8.036 kJ. (Ans.) (Q In its other process, W = Q)Alternatively W p V V
V
pV p
eepe:kJ = 8.04 kJ=
F
HGI
KJ=
F
HGI
KJ
=× × × F
HGI
KJ×L
N
M
M
M
MO
Q
P
P
P
P
−11 2
1
11 1
2
110 005^531
5
10log log.log